

Please write clearly in	block capitals.		
Centre number		Candidate number	
Surname			
Forename(s)			
Candidate signature			

A-level **MATHEMATICS**

Paper 1

Wednesday 6 June 2018

Morning

Time allowed: 2 hours

Materials

- You must have the AQA Formulae for A-level Mathematics booklet.
- You should have a graphical or scientific calculator that meets the requirements of the specification.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer each question in the space provided for that question.
 If you require extra space, use an AQA supplementary answer book; do not use the space provided for a different question.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 100.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
TOTAL		

Answer all questions in the spaces provided.

 $y = \frac{1}{x^2}$ 1

Find an expression for $\frac{dy}{dx}$

Circle your answer.

[1 mark]

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{0}{2x}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = x^{-2}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{2}{x}$$

$$\frac{dy}{dx} = \frac{0}{2x} \qquad \frac{dy}{dx} = x^{-2} \qquad \frac{dy}{dx} = -\frac{2}{x} \qquad \frac{dy}{dx} = -\frac{2}{x^3}$$

The graph of $y = 5^x$ is transformed by a stretch in the y-direction, scale factor 5 2 State the equation of the transformed graph.

Circle your answer.

[1 mark]

$$y = 5 \times 5$$

$$y=5^{\frac{x}{5}}$$

$$y = 5 \times 5^{x}$$
 $y = 5^{\frac{x}{5}}$ $y = \frac{1}{5} \times 5^{x}$ $y = 5^{5x}$

$$y=5^{5x}$$

Do not write outside the box

3	A periodic	sequence is defir	ned by $U_n = \sin\left(\frac{1}{2}\right)$	$\left(\frac{n\pi}{2}\right)$		
	State the p	eriod of this sequ	ience.			
	Circle your	answer.				F4 13
						[1 mark]
		8	2π	4	π	
4	The function	n f is defined by	$f(x) = e^{x-4}, x \in$	\mathbb{R}		
	Find $f^{-1}(x)$) and state its do	main.			
						[3 marks]
		Turn	ver for the next o	nuestion		
		i ui ii Ov	ei ioi tile ilext (_ไ น ธ อแบท		

Do	not	write
ou	tside	the
	ho	~

5	A curve is defined by the parametric equations	
	$x = 4 \times 2^{-t} + 3$	
	$y = 3 \times 2^t - 5$	
5 (a)	Show that $\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{3}{4} \times 2^{2t}$	
o (a)	$dx = 4 \wedge 2$	[3 marks]
5 (b)	Find the Cartesian equation of the curve in the form $xy + ax + by = c$ when	eab
5 (b)	Find the Cartesian equation of the curve in the form $xy + ax + by = c$, where and c are integers.	
5 (b)		e <i>a</i> , <i>b</i>
5 (b)		

Do not	write
outside	the t
ho	v

6 (a)	Find the first three terms, in ascending powers of x , of the binomial expan	sion
	of $\frac{1}{\sqrt{4+x}}$	[3 marks]
6 (b)	Hence, find the first three terms of the binomial expansion of $\frac{1}{\sqrt{4-x^3}}$	
		[2 marks]
	Question 6 continues on the next page	

6 (c)	Using your answer to part (b) , find an approximation for $\int_0^1 \frac{1}{\sqrt{4-x^3}} dx$, giving your	
	answer to seven decimal places. [3 mar	ks]
		•
6 (d) (i)	Edward, a student, decides to use this method to find a more accurate value for the integral by increasing the number of terms of the binomial expansion used.)
	Explain clearly whether Edward's approximation will be an overestimate, an	
	underestimate, or if it is impossible to tell. [2 mar	ks]

Do not v	write
outside	the
hox	

6 (d) (ii)	Edward goes on to use the expansion from part (b) to find an approximation for $\int_{-2}^{0} \frac{1}{\sqrt{4-x^3}} \mathrm{d}x$
	Explain why Edward's approximation is invalid. [2 marks]

Turn over for the next question

Do not v	vrit
outside	the
box	

7	Three points A, B and C have coordinates A (8, 17), B (15, 10) and C (-2 ,	. –7)
7 (a)	Show that angle ABC is a right angle.	[3 marks]
7 (b)	A, B and C lie on a circle.	
7 (b) (i)	Explain why AC is a diameter of the circle.	[1 mark]

7 (b) (ii)	Determine whether the point D (-8 , -2) lies inside the circle, on the circle or outside the circle.
	Fully justify your answer.
	[4 marks]
	<u> </u>
	Turn over for the next question

8	The diagram shows a sector of a circle <i>OAB</i> .	Do not write outside the box
	C is the midpoint of OB.	
	Angle AOB is θ radians.	
	A θ C B	
8 (a)	Given that the area of the triangle <i>OAC</i> is equal to one quarter of the area of the sector <i>OAB</i> , show that $\theta=2\sin\theta$ [4 marks]	

8 (b)	Use the Newton-Raphson method with $\theta_1=\pi$, to find θ_3 as an approximative Give your answer correct to five decimal places.	
		[3 marks]
8 (c)	Given that $\theta = 1.89549$ to five decimal places, find an estimate for the per-	centage
	error in the approximation found in part (b).	[1 mark]
	Turn over for the next question	
	·	

9	An arithmetic sequence has first term a and common difference d .	
	The sum of the first 36 terms of the sequence is equal to the square of the sum of the first 6 terms.	
9 (a)	Show that $4a + 70d = 4a^2 + 20ad + 25d^2$ [4 marks]	

Do not	write
outside	the
ho	·

9 (b)	Given that the sixth term of the sequence is 25, find the smallest possible value of <i>a</i> .
	[5 marks]
	Turn over for the next question

Do i	not	write
outs	side	the
	kod	(

10	A scientist is researching the effects of caffeine. She models the mass of caffeine in the body using
	$m = m_0 e^{-kt}$
	where m_0 milligrams is the initial mass of caffeine in the body and m milligrams is the mass of caffeine in the body after t hours.
	On average, it takes 5.7 hours for the mass of caffeine in the body to halve.
	One cup of strong coffee contains 200 mg of caffeine.
10 (a)	The scientist drinks two strong cups of coffee at 8 am. Use the model to estimate the mass of caffeine in the scientist's body at midday.
	[4 marks]

	Do not write outside the box
ks]	
_	
by	
rk]	

40 (1)	
10 (b)	The scientist wants the mass of caffeine in her body to stay below 480 mg
	Use the model to find the earliest time that she could drink another cup of strong coffee.
	Give your answer to the nearest minute.
	[3 marks]
10 (c)	State a reason why the mass of caffeine remaining in the scientist's body predicted by the model may not be accurate.
	[1 mark]
	Turn over for the next question

1 5

Do not write
outside the

11 The daily world production of oil can be modelled using

$$V = 10 + 100 \left(\frac{t}{30}\right)^3 - 50 \left(\frac{t}{30}\right)^4$$

where V is volume of oil in millions of barrels, and t is time in years since 1 January 1980.

11 (a) (i) The model is used to predict the time, T, when oil production will fall to zero.

Show that T satisfies the equation

$$T = \sqrt[3]{60T^2 + \frac{162\,000}{T}}$$

[3 ma	rks
-------	-----

11 (a) (ii)	Use the iterative formula $T_{n+1} = \sqrt[3]{60T_n^2 + \frac{162000}{T_n}}$, with $T_0 = 38$, to find the	
	values of T_1 , T_2 , and T_3 , giving your answers to three decimal places.	
	[2 marks	3]

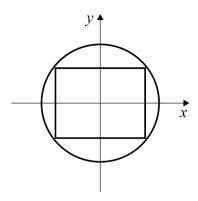
Do	not	write
ou	tside	e the
	ha	

11 (a) (iii)	Explain the relevance of using $T_0=38$ [1 mark]
11 (b)	From 1 January 1980 the daily use of oil by one technologically developing country can be modelled as
	$V=4.5\times 1.063^t$
	Use the models to show that the country's use of oil and the world production of oil will be equal during the year 2029.
	[4 marks]
	Turn over for the next question

12 p(x) = 30x ³ - 7x ² - 7x + 2 12 (a) Prove that (2x + 1) is a factor of p(x) [2 marks] 12 (b) Factorise p(x) completely. [3 marks]			
[2 marks]	12	$p(x) = 30x^3 - 7x^2 - 7x + 2$	
12 (b) Factorise p(x) completely.	12 (a)	Prove that $(2x + 1)$ is a factor of $p(x)$	[2 marks]
12 (b) Factorise p(x) completely. [3 marks]			[Z IIIaiks]
12 (b) Factorise p(x) completely. [3 marks]			·
12 (b) Factorise p(x) completely. [3 marks]			
12 (b) Factorise p(x) completely. [3 marks]			
12 (b) Factorise p(x) completely. [3 marks]			
12 (b) Factorise p(x) completely. [3 marks]			
12 (b) Factorise p(x) completely. [3 marks]			
	12 (b)	Factorise $p(x)$ completely.	[3 marks]

	Do not write outside the box
]	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
_	

12 (c)	Prove that there are no	real solutions to the equation	
		$\frac{30\sec^2 x + 2\cos x}{7} = \sec x + 1$	[5 marks]


Turn over for the next question

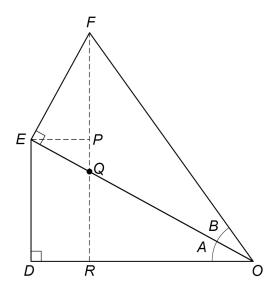
Do	not	write
ou	tside	e the
	ha	

A company is designing a logo. The logo is a circle of radius 4 inches with an inscribed rectangle. The rectangle must be as large as possible.

The company models the logo on an x-y plane as shown in the diagram.

Use calculus to find the maximum area of the rectangle.

Fully justify your answer.	[10 marks]



_	
_	
_	
_	
_	
_	
_	
_	
_	
_	
_	
_	
_	
	Town area for the result area tion
	Turn over for the next question
	Turn over for the next question
	Turn over for the next question
	Turn over for the next question
	Turn over for the next question
	Turn over for the next question
	Turn over for the next question
	Turn over for the next question
	Turn over for the next question
	Turn over for the next question
	Turn over for the next question
	Turn over for the next question

Some students are trying to prove an identity for $\sin (A + B)$.

They start by drawing two right-angled triangles ODE and OEF, as shown.

The students' incomplete proof continues,

Let angle DOE = A and angle EOF = B.

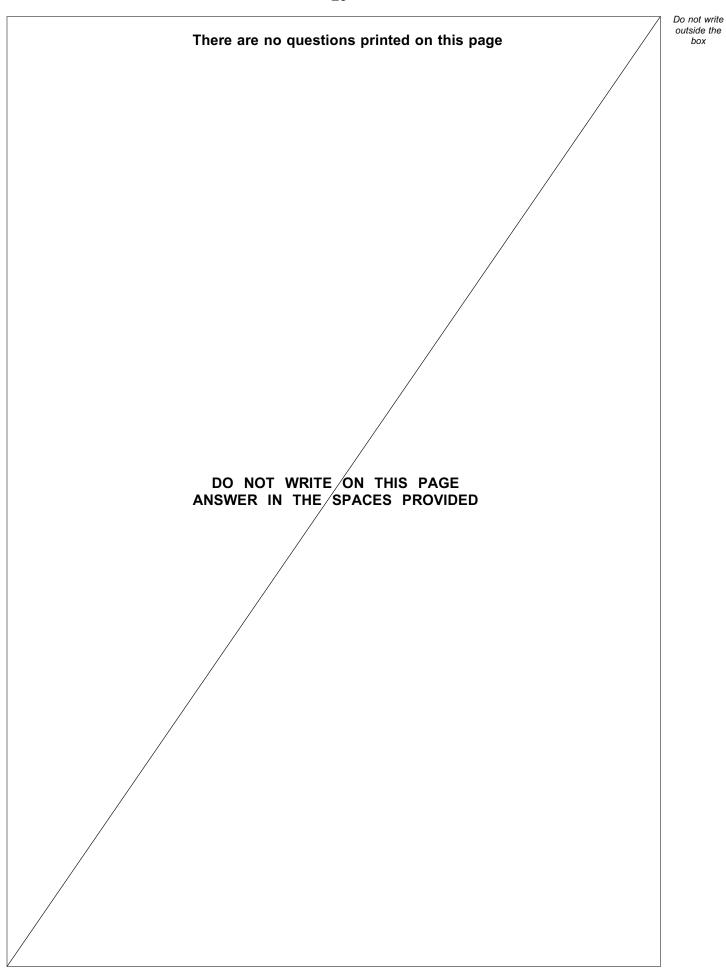
In triangle OFR,

Line 1
$$\sin(A + B) = \frac{RF}{OF}$$

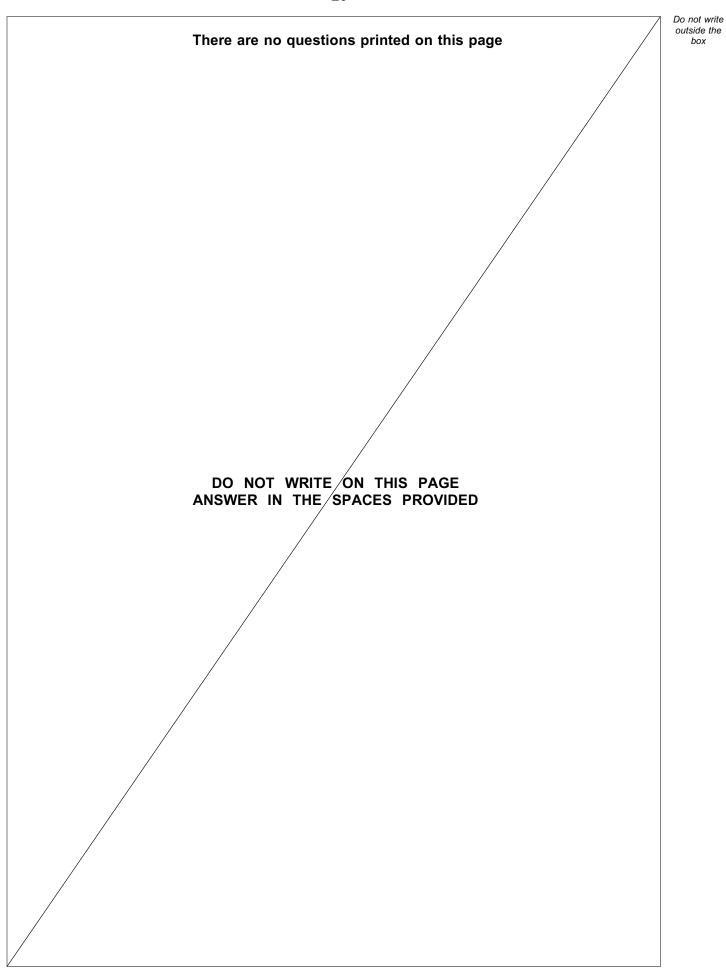
Line 2 $= \frac{RP + PF}{OF}$
Line 3 $= \frac{DE}{OF} + \frac{PF}{OF} \text{ since } DE = RP$
Line 4 $= \frac{DE}{....} \times \frac{....}{OF} + \frac{PF}{EF} \times \frac{EF}{OF}$
Line 5 $= + \cos A \sin B$

14 (a)	Explain why $\frac{PF}{EF} \times \frac{EF}{OF}$ in Line 4 leads to $\cos A \sin B$ in Line 5
--------	---

[2 marks]



Complete Line 4	and Line 5 to prove the	e identity		
	Line 4	$= \frac{DE}{} \times {OF} + \frac{P}{E}$	$\frac{PF}{F} \times \frac{EF}{OF}$	
	Line 5	=		+ cos <i>A</i> sin <i>B</i> [1 mark]
	argument used in part (a) only proves the	he identity wh	en A and B are
acute angles.				[1 mark]
	claims that by replacing n identity for sin(<i>A</i> – <i>B</i>		e identity for	sin (A + B) it is
possible to find a Assuming the ide	n identity for $\sin (A - B)$ ntity for $\sin (A + B)$ is c).		
possible to find a	n identity for $\sin (A - B)$ ntity for $\sin (A + B)$ is c).		<i>B</i> , prove a
possible to find a Assuming the ide	n identity for $\sin (A - B)$ ntity for $\sin (A + B)$ is c).		
possible to find a Assuming the ide	n identity for $\sin (A - B)$ ntity for $\sin (A + B)$ is c).		<i>B</i> , prove a
possible to find a Assuming the ide	n identity for $\sin (A - B)$ ntity for $\sin (A + B)$ is c).		<i>B</i> , prove a
possible to find a Assuming the ide	n identity for $\sin (A - B)$ ntity for $\sin (A + B)$ is c).		<i>B</i> , prove a
possible to find a Assuming the ide	n identity for $\sin (A - B)$ ntity for $\sin (A + B)$ is c).		<i>B</i> , prove a
possible to find a Assuming the ide	n identity for $\sin (A - B)$ ntity for $\sin (A + B)$ is c).		<i>B</i> , prove a
possible to find a Assuming the ide	n identity for $\sin (A - B)$ ntity for $\sin (A + B)$ is c).		<i>B</i> , prove a
possible to find a Assuming the ide	n identity for $\sin (A - B)$ ntity for $\sin (A + B)$ is c).		<i>B</i> , prove a
possible to find a Assuming the ide	n identity for $\sin (A - B)$ ntity for $\sin (A + B)$ is c).		<i>B</i> , prove a



A curve has equation $y = x^3 - 48x$	
The point \boldsymbol{A} on the curve has \boldsymbol{x} coordinate -4	
The point \boldsymbol{B} on the curve has \boldsymbol{x} coordinate -4	+h
Show that the gradient of the line AB is $h^2 - 1$	
	[4 marks]
,	
Explain how the result of part (a) can be used to	to show that A is a stationary point on
Explain how the result of part (a) can be used the curve.	
	to show that A is a stationary point on [2 marks]

