

| Please write clearly in | block capitals. |                  |  |
|-------------------------|-----------------|------------------|--|
| Centre number           |                 | Candidate number |  |
| Surname                 |                 |                  |  |
| Forename(s)             |                 |                  |  |
| Candidate signature     |                 |                  |  |

# A-level **MATHEMATICS**

Paper 2

Wednesday 13 June 2018

Morning

Time allowed: 2 hours

# **Materials**

- You must have the AQA Formulae for A-level Mathematics booklet.
- You should have a graphical or scientific calculator that meets the requirements of the specification.

## Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer each question in the space provided for that question.
   If you require extra space, use an AQA supplementary answer book; do not use the space provided for a different question.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

# Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 100.

# Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

| For Examiner's Use |      |  |
|--------------------|------|--|
| Question           | Mark |  |
| 1                  |      |  |
| 2                  |      |  |
| 3                  |      |  |
| 4                  |      |  |
| 5                  |      |  |
| 6                  |      |  |
| 7                  |      |  |
| 8                  |      |  |
| 9                  |      |  |
| 10                 |      |  |
| 11                 |      |  |
| 12                 |      |  |
| 13                 |      |  |
| 14                 |      |  |
| 15                 |      |  |
| 16                 |      |  |
| 17                 |      |  |
| TOTAL              |      |  |
|                    |      |  |



| Do | not   | writ  | É |
|----|-------|-------|---|
| ou | tside | e the | , |
|    | ha    |       |   |

| Section A | ١ |
|-----------|---|
|-----------|---|

Answer all questions in the spaces provided.

1 Which of these statements is correct?

Tick one box.

[1 mark]

$$x = 2 \Rightarrow x^2 = 4$$

$$x^2 = 4 \Rightarrow x = 2$$

$$x^2 = 4 \Leftrightarrow x = 2$$

$$x^2 = 4 \Rightarrow x = -2$$



2 Find the coefficient of  $x^2$  in the expansion of  $(1 + 2x)^7$ 

Circle your answer.

[1 mark]

42

4

21



3



Do not write outside the box



Find the total shaded area.

Circle your answer.

[1 mark]

-68

60

68



[2 marks]

Do not write outside the box

**4** A curve, *C*, has equation  $y = x^2 - 6x + k$ , where *k* is a constant.

The equation  $x^2 - 6x + k = 0$  has two distinct positive roots.

4 (a) Sketch C on the axes below.

*y* • *x* 



| Do not write |
|--------------|
| outside the  |
| box          |

| 4 (b) | Find the range of possible values for $k$ . |           |
|-------|---------------------------------------------|-----------|
|       | Fully justify your answer.                  | [4 marks] |
|       |                                             | [4 marks] |
|       |                                             |           |
|       |                                             |           |
|       |                                             |           |
|       |                                             |           |
|       |                                             |           |
|       |                                             |           |
|       |                                             |           |
|       |                                             |           |
|       |                                             |           |
|       |                                             |           |
|       |                                             |           |
|       |                                             |           |
|       |                                             |           |
|       |                                             |           |
|       | Turn over for the next question             |           |
|       |                                             |           |
|       |                                             |           |
|       |                                             |           |
|       |                                             |           |
|       |                                             |           |
|       |                                             |           |
|       |                                             |           |
|       |                                             |           |
|       |                                             |           |



| 5 | Prove that 23 is a prime number. | [2 marks] |
|---|----------------------------------|-----------|
|   |                                  |           |
|   |                                  |           |
|   |                                  |           |
|   |                                  |           |
|   |                                  |           |
|   |                                  |           |
|   |                                  |           |
|   |                                  |           |
|   |                                  |           |
|   |                                  |           |
|   |                                  |           |
|   |                                  |           |
|   |                                  |           |
|   |                                  |           |



| $(x+y-2)^2 = e^y - 1$ |        |
|-----------------------|--------|
| (x + y - 2) = 0       | [7 mar |
|                       |        |
|                       |        |
|                       |        |
|                       |        |
|                       |        |
| <br>                  |        |
|                       |        |
|                       |        |
|                       |        |
|                       |        |
|                       |        |
| <br>                  |        |
|                       |        |
|                       |        |
|                       |        |
|                       |        |
|                       |        |
|                       |        |
|                       |        |
|                       |        |
|                       |        |
|                       |        |
|                       |        |
|                       |        |
|                       |        |
|                       |        |
|                       |        |
|                       |        |
| <br>                  |        |
|                       |        |
| <br>                  |        |
|                       |        |
|                       |        |
|                       |        |
|                       |        |



7 A function f has domain  $\mathbb{R}$  and range  $\{y \in \mathbb{R} : y \ge e\}$ 

The graph of y = f(x) is shown.



The gradient of the curve at the point (x, y) is given by  $\frac{dy}{dx} = (x - 1)e^x$ 

Find an expression for f(x).

Fully justify your answer.

[8 marks]

| <br>    |        |  |
|---------|--------|--|
| Ш       |        |  |
| Ш       |        |  |
| <br>) S | \ I∎II |  |

9

| Turn over for the next question |
|---------------------------------|
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |



| 8 (a) | Determine a sequence of transformations which maps the graph of $y = \sin x$ onto the graph of $y = \sqrt{3}\sin x - 3\cos x + 4$ | Do no<br>outsid<br>bo |
|-------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|       | Fully justify your answer.  [7 marks]                                                                                             |                       |
|       |                                                                                                                                   |                       |
|       |                                                                                                                                   |                       |
|       |                                                                                                                                   |                       |
|       |                                                                                                                                   |                       |
|       |                                                                                                                                   |                       |
|       |                                                                                                                                   |                       |
|       |                                                                                                                                   |                       |
|       |                                                                                                                                   |                       |
|       |                                                                                                                                   |                       |
|       |                                                                                                                                   |                       |
|       |                                                                                                                                   |                       |
|       |                                                                                                                                   |                       |
|       |                                                                                                                                   |                       |
|       |                                                                                                                                   |                       |



| Do not  | write |
|---------|-------|
| outside | the   |
| ho      | Y     |

| 8 (b) (i)  | Show that the least value of $\frac{1}{\sqrt{3}\sin x - 3\cos x + 4}$ is $\frac{2 - \sqrt{3}}{2}$ | [2 marks] |
|------------|---------------------------------------------------------------------------------------------------|-----------|
|            |                                                                                                   |           |
|            | ·                                                                                                 |           |
|            |                                                                                                   |           |
|            |                                                                                                   |           |
|            |                                                                                                   |           |
|            |                                                                                                   |           |
| 8 (b) (ii) | Find the greatest value of $\frac{1}{\sqrt{3}\sin x - 3\cos x + 4}$                               | [1 mark]  |
|            |                                                                                                   |           |
|            |                                                                                                   |           |
|            |                                                                                                   |           |

Turn over for the next question



| Do | not   | write |
|----|-------|-------|
| ou | tside | the   |
|    | ho    | ~     |

| 9     | A market trader notices that daily sales are dependent on two variables:        |           |
|-------|---------------------------------------------------------------------------------|-----------|
|       | number of hours, $t$ , after the stall opens                                    |           |
|       | total sales, $x$ , in pounds since the stall opened.                            |           |
|       | The trader models the rate of sales as directly proportional to $\frac{8-t}{x}$ |           |
|       | After two hours the rate of sales is £72 per hour and total sales are £336      |           |
| 9 (a) | Show that                                                                       |           |
|       | $x\frac{\mathrm{d}x}{\mathrm{d}t} = 4032(8-t)$                                  | [3 marks] |
|       |                                                                                 |           |
|       |                                                                                 |           |
|       |                                                                                 |           |
|       |                                                                                 |           |
|       |                                                                                 |           |
|       |                                                                                 |           |
|       |                                                                                 |           |
|       |                                                                                 |           |
|       |                                                                                 |           |
|       |                                                                                 |           |
|       |                                                                                 |           |
|       |                                                                                 |           |
|       |                                                                                 |           |
|       |                                                                                 |           |
|       |                                                                                 |           |
|       |                                                                                 |           |
|       |                                                                                 |           |



| 9 (b) | Hence, show that                      |           |
|-------|---------------------------------------|-----------|
|       | $x^2 = 4032t(16 - t)$                 | [3 marks] |
|       |                                       |           |
|       |                                       |           |
|       |                                       |           |
|       |                                       |           |
|       |                                       |           |
|       |                                       |           |
|       |                                       |           |
|       |                                       |           |
|       |                                       |           |
|       |                                       |           |
|       | Question 9 continues on the next page |           |
|       |                                       |           |
|       |                                       |           |
|       |                                       |           |
|       |                                       |           |
|       |                                       |           |
|       |                                       |           |
|       |                                       |           |
|       |                                       |           |
|       |                                       |           |
|       |                                       |           |
|       |                                       |           |
|       |                                       |           |



|           |                                                                                                       | Do not       |
|-----------|-------------------------------------------------------------------------------------------------------|--------------|
| 9 (c)     | The stall opens at 09.30.                                                                             | outsid<br>bo |
| 9 (c) (i) | The trader closes the stall when the rate of sales falls below £24 per hour.                          |              |
|           | Using the results in parts (a) and (b), calculate the earliest time that the trader closes the stall. |              |
|           | [6 marks]                                                                                             |              |
|           |                                                                                                       |              |
|           |                                                                                                       |              |
|           |                                                                                                       |              |
|           |                                                                                                       |              |
|           |                                                                                                       |              |
|           |                                                                                                       |              |
|           |                                                                                                       |              |
|           |                                                                                                       |              |
|           |                                                                                                       |              |
|           |                                                                                                       |              |
|           |                                                                                                       |              |
|           |                                                                                                       |              |
|           |                                                                                                       |              |
|           |                                                                                                       |              |
|           |                                                                                                       |              |
|           |                                                                                                       |              |
|           |                                                                                                       |              |
|           |                                                                                                       |              |
|           |                                                                                                       |              |
|           |                                                                                                       |              |
|           |                                                                                                       |              |
|           |                                                                                                       |              |
|           |                                                                                                       |              |



|            | 15                                                              |          |
|------------|-----------------------------------------------------------------|----------|
| 9 (c) (ii) | Explain why the model used by the trader is not valid at 09.30. | [2 marks |
|            |                                                                 |          |
|            |                                                                 |          |
|            |                                                                 |          |
|            |                                                                 |          |
|            |                                                                 |          |
|            |                                                                 |          |
|            | Turn over for Section B                                         |          |
|            |                                                                 |          |
|            |                                                                 |          |
|            |                                                                 |          |
|            |                                                                 |          |
|            |                                                                 |          |
|            |                                                                 |          |
|            |                                                                 |          |
|            |                                                                 |          |
|            |                                                                 |          |
|            |                                                                 |          |
|            |                                                                 |          |



## Section B

Answer all questions in the spaces provided.

A garden snail moves in a straight line from rest to  $1.28 \,\mathrm{cm}\,\mathrm{s}^{-1}$ , with a constant 10 acceleration in 1.8 seconds.

Find the acceleration of the snail.

Circle your answer.

[1 mark]

$$2.30\,{\rm m\,s^{-2}}$$

$$0.71 \, \text{m s}^{-2}$$

$$2.30\,\mathrm{m\,s^{-2}}$$
  $0.71\,\mathrm{m\,s^{-2}}$   $0.0071\,\mathrm{m\,s^{-2}}$   $0.023\,\mathrm{m\,s^{-2}}$ 

11 A uniform rod, AB, has length 4 metres.

The rod is resting on a support at its midpoint C.

A particle of mass 4 kg is placed 0.6 metres to the left of C.

Another particle of mass  $1.5 \, \text{kg}$  is placed x metres to the right of C, as shown.



The rod is balanced in equilibrium at C.

Find x.

Circle your answer.

[1 mark]

1.8 m

1.5 m

1.75 m

1.6 m



|                                  | The graph below shows the velocity of an object moving in a straight line over a 20 second journey.        |
|----------------------------------|------------------------------------------------------------------------------------------------------------|
| ocity 3  2  1  0  -1  -2  -3  -4 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22<br>Time (s)                                       |
| -5·                              | Find the maximum magnitude of the acceleration of the object.  [1 mark]                                    |
|                                  |                                                                                                            |
|                                  |                                                                                                            |
| b)                               | The object is at its starting position at times 0, $t_1$ and $t_2$ seconds. Find $t_1$ and $t_2$ [4 marks] |
| b)                               | Find $t_1$ and $t_2$                                                                                       |
| (b)                              | Find $t_1$ and $t_2$                                                                                       |
| (b)                              | Find $t_1$ and $t_2$                                                                                       |



| 13     | In this question use $g=9.8\mathrm{ms^{-2}}$                                                                                                      |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------|
|        | A boy attempts to move a wooden crate of mass 20 kg along horizontal ground. The coefficient of friction between the crate and the ground is 0.85 |
| 13 (a) | The boy applies a horizontal force of 150 N. Show that the crate remains stationary.  [3 marks]                                                   |
|        |                                                                                                                                                   |
|        |                                                                                                                                                   |
|        |                                                                                                                                                   |
|        |                                                                                                                                                   |
|        |                                                                                                                                                   |
|        |                                                                                                                                                   |
|        |                                                                                                                                                   |
|        |                                                                                                                                                   |
|        |                                                                                                                                                   |
|        |                                                                                                                                                   |
|        |                                                                                                                                                   |
|        |                                                                                                                                                   |
|        |                                                                                                                                                   |
|        |                                                                                                                                                   |
|        |                                                                                                                                                   |
|        |                                                                                                                                                   |
|        |                                                                                                                                                   |
|        |                                                                                                                                                   |
|        |                                                                                                                                                   |
|        |                                                                                                                                                   |



| (b) | Instead, the boy uses a handle to pull the crate forward. He exerts a force of 150 N, at an angle of 15° above the horizontal, as shown in the diagram. |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | 150 N                                                                                                                                                   |
|     | Determine whether the crate remains stationary.                                                                                                         |
|     | Fully justify your answer.  [5 mark                                                                                                                     |
|     |                                                                                                                                                         |
|     |                                                                                                                                                         |
|     |                                                                                                                                                         |
|     |                                                                                                                                                         |
|     |                                                                                                                                                         |
|     |                                                                                                                                                         |
|     |                                                                                                                                                         |
|     |                                                                                                                                                         |
|     |                                                                                                                                                         |
|     |                                                                                                                                                         |
|     |                                                                                                                                                         |



| Do | not   | write |
|----|-------|-------|
| ou | tside | e the |
|    | ha    |       |

| 14     | A quadrilateral has vertices A, B, C and D with position vectors given by                                                                                                                                                                                                          |           |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|        | $\overrightarrow{OA} = \begin{bmatrix} 3 \\ 5 \\ 1 \end{bmatrix}, \overrightarrow{OB} = \begin{bmatrix} -1 \\ 2 \\ 7 \end{bmatrix}, \overrightarrow{OC} = \begin{bmatrix} 0 \\ 7 \\ 6 \end{bmatrix} \text{ and } \overrightarrow{OD} = \begin{bmatrix} 4 \\ 10 \\ 0 \end{bmatrix}$ |           |
| 14 (a) | Write down the vector $\overrightarrow{AB}$                                                                                                                                                                                                                                        |           |
|        |                                                                                                                                                                                                                                                                                    | [1 mark]  |
|        |                                                                                                                                                                                                                                                                                    |           |
|        |                                                                                                                                                                                                                                                                                    |           |
|        |                                                                                                                                                                                                                                                                                    |           |
| 14 (b) | Show that ABCD is a parallelogram, but not a rhombus.                                                                                                                                                                                                                              | [5 marks] |
|        |                                                                                                                                                                                                                                                                                    |           |
|        |                                                                                                                                                                                                                                                                                    |           |
|        |                                                                                                                                                                                                                                                                                    |           |
|        |                                                                                                                                                                                                                                                                                    |           |
|        |                                                                                                                                                                                                                                                                                    |           |
|        |                                                                                                                                                                                                                                                                                    |           |
|        |                                                                                                                                                                                                                                                                                    |           |
|        |                                                                                                                                                                                                                                                                                    |           |
|        |                                                                                                                                                                                                                                                                                    |           |
|        |                                                                                                                                                                                                                                                                                    |           |
|        |                                                                                                                                                                                                                                                                                    |           |
|        |                                                                                                                                                                                                                                                                                    |           |
|        |                                                                                                                                                                                                                                                                                    |           |
|        |                                                                                                                                                                                                                                                                                    |           |
|        |                                                                                                                                                                                                                                                                                    |           |
|        |                                                                                                                                                                                                                                                                                    |           |
|        |                                                                                                                                                                                                                                                                                    |           |
|        |                                                                                                                                                                                                                                                                                    |           |
|        |                                                                                                                                                                                                                                                                                    |           |



| 15     | A driver is road-testing two minibuses, A and B, for a taxi company.                                                       |
|--------|----------------------------------------------------------------------------------------------------------------------------|
|        | The performance of each minibus along a straight track is compared.                                                        |
|        | A flag is dropped to indicate the start of the test.                                                                       |
|        | Each minibus starts from rest.                                                                                             |
|        | The acceleration in $m  s^{-2}$ of each minibus is modelled as a function of time, $t$ seconds, after the flag is dropped: |
|        | The acceleration of $A = 0.138 t^2$<br>The acceleration of $B = 0.024 t^3$                                                 |
| 15 (a) | Find the time taken for A to travel 100 metres.                                                                            |
|        | Give your answer to four significant figures.  [4 marks]                                                                   |
|        |                                                                                                                            |
|        |                                                                                                                            |
|        |                                                                                                                            |
|        |                                                                                                                            |
|        |                                                                                                                            |
|        |                                                                                                                            |
|        |                                                                                                                            |
|        |                                                                                                                            |
|        |                                                                                                                            |
|        |                                                                                                                            |
|        |                                                                                                                            |
|        |                                                                                                                            |
|        | Question 15 continues on the next page                                                                                     |
|        |                                                                                                                            |
|        |                                                                                                                            |
|        |                                                                                                                            |

| st          |
|-------------|
| arks]       |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
| n.<br>mark] |
|             |
|             |
|             |
|             |
|             |
| _           |



| In this question use $g = 9.81 \mathrm{m  s^{-2}}$ A particle is projected with an initial speed $u$ , at an angle of 35° above the horizontal lt lands at a point 10 metres vertically below its starting position.  The particle takes 1.5 seconds to reach the highest point of its trajectory.  Find $u$ .  [3 mark]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| It lands at a point 10 metres vertically below its starting position.  The particle takes 1.5 seconds to reach the highest point of its trajectory.  Find u.  [3 mark]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ion use $g=9.81\mathrm{ms^{-2}}$                                               |
| The particle takes 1.5 seconds to reach the highest point of its trajectory.  Find u.  [3 mark  Find the total time that the particle is in flight.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | projected with an initial speed $u$ , at an angle of 35° above the horizontal. |
| Find <i>u</i> .  [3 mark  [5]  [7]  [7]  [8]  [9]  [9]  [9]  [9]  [9]  [9]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [10]  [1 | point 10 metres vertically below its starting position.                        |
| Find the total time that the particle is in flight.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | akes 1.5 seconds to reach the highest point of its trajectory.                 |
| Find the total time that the particle is in flight.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                |
| Find the total time that the particle is in flight.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [3 marks                                                                       |
| Find the total time that the particle is in flight.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                |
| Find the total time that the particle is in flight.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                |
| Find the total time that the particle is in flight.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                |
| Find the total time that the particle is in flight.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                |
| Find the total time that the particle is in flight.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                |
| Find the total time that the particle is in flight.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                |
| Find the total time that the particle is in flight.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | time that the particle is in flight.                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [3 marks                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                |



| 17         | A buggy is pulling a roller-skater, in a straight line along a horizontal road, by means of a connecting rope as shown in the diagram. |
|------------|----------------------------------------------------------------------------------------------------------------------------------------|
|            |                                                                                                                                        |
|            | The combined mass of the buggy and driver is 410 kg A driving force of 300 N and a total resistance force of 140 N act on the buggy.   |
|            | The mass of the roller-skater is 72 kg A total resistance force of <i>R</i> newtons acts on the roller-skater.                         |
|            | The buggy and the roller-skater have an acceleration of $0.2\mathrm{ms^{-2}}$                                                          |
| 17 (a) (i) | Find R. [3 marks]                                                                                                                      |
|            |                                                                                                                                        |
|            |                                                                                                                                        |
|            |                                                                                                                                        |
|            |                                                                                                                                        |
|            |                                                                                                                                        |
|            |                                                                                                                                        |
|            |                                                                                                                                        |
|            | -                                                                                                                                      |
|            |                                                                                                                                        |
|            |                                                                                                                                        |
|            |                                                                                                                                        |
|            |                                                                                                                                        |
|            |                                                                                                                                        |
|            |                                                                                                                                        |
|            |                                                                                                                                        |
|            |                                                                                                                                        |



|  | <br>writ<br>e the<br>x | _ |
|--|------------------------|---|
|  |                        |   |
|  |                        |   |
|  |                        |   |

| 17 (a) (ii) | Find the tension in the rope.                    | [3 marks] |
|-------------|--------------------------------------------------|-----------|
|             |                                                  |           |
|             |                                                  |           |
|             |                                                  |           |
|             |                                                  |           |
|             |                                                  |           |
|             |                                                  |           |
| 17 (b)      | State a necessary assumption that you have made. | [1 mark]  |
|             |                                                  |           |
|             |                                                  |           |
|             | Question 17 continues on the next page           |           |
|             |                                                  |           |
|             |                                                  |           |
|             |                                                  |           |
|             |                                                  |           |
|             |                                                  |           |
|             |                                                  |           |



| pap             | Jers.cor                           |
|-----------------|------------------------------------|
| <sub>5</sub> –1 | Do not write<br>outside the<br>box |
| ce              |                                    |
| ks]             |                                    |
|                 |                                    |
| _               |                                    |
|                 |                                    |
|                 |                                    |
|                 |                                    |

| 17 (c)     | The roller-skater releases the rope at a point $A$ , when she reaches a speed of $6\mathrm{ms^{-1}}$    |  |  |
|------------|---------------------------------------------------------------------------------------------------------|--|--|
|            | She continues to move forward, experiencing the same resistance force.                                  |  |  |
|            | The driver notices a change in motion of the buggy, and brings it to rest at a distance of 20 m from A. |  |  |
| 17 (c) (i) | Determine whether the roller-skater will stop before reaching the stationary buggy.                     |  |  |
|            | Fully justify your answer.  [5 marks]                                                                   |  |  |
|            |                                                                                                         |  |  |
|            |                                                                                                         |  |  |
|            |                                                                                                         |  |  |
|            |                                                                                                         |  |  |
|            |                                                                                                         |  |  |
|            |                                                                                                         |  |  |
|            |                                                                                                         |  |  |
|            |                                                                                                         |  |  |
|            |                                                                                                         |  |  |
|            |                                                                                                         |  |  |
|            |                                                                                                         |  |  |
|            | -                                                                                                       |  |  |
|            |                                                                                                         |  |  |
|            |                                                                                                         |  |  |
|            |                                                                                                         |  |  |
|            |                                                                                                         |  |  |
|            |                                                                                                         |  |  |
|            |                                                                                                         |  |  |
|            |                                                                                                         |  |  |
|            |                                                                                                         |  |  |
|            |                                                                                                         |  |  |



| 17 (c) (ii) | Explain the change in motion that the driver noticed. | Do not write outside the box |
|-------------|-------------------------------------------------------|------------------------------|
| (5) (11)    | [2 marks]                                             | DOX                          |
|             |                                                       |                              |
|             |                                                       |                              |
|             |                                                       |                              |
|             |                                                       |                              |
|             |                                                       |                              |
|             |                                                       |                              |
|             |                                                       |                              |
|             |                                                       |                              |
|             | END OF QUESTIONS                                      |                              |
|             |                                                       |                              |
|             |                                                       |                              |
|             |                                                       |                              |
|             |                                                       |                              |
|             |                                                       |                              |
|             |                                                       |                              |
|             |                                                       |                              |
|             |                                                       |                              |
|             |                                                       |                              |
|             |                                                       |                              |
|             |                                                       |                              |
|             |                                                       |                              |
|             |                                                       |                              |
|             |                                                       |                              |
|             |                                                       |                              |





