

Please write clearly in block capitals.	
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	

AS FURTHER MATHEMATICS

Paper 1

Monday 14 May 2018

Afternoon

Time allowed: 1 hour 30 minutes

Materials

- You must have the AQA formulae and statistical tables booklet for A-level Mathematics and A-level Further Mathematics.
- You should have a scientific calculator that meets the requirements of the specification. (You may use a graphical calculator.)

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer each question in the space provided for that question. If you require extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do **not** write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

	For Exam	iner's Use
	Question	Mark
	1	
	2	
	1 2 3 4	
	4	
	5	
	6	
	7	
	8	
	9	
	10	
	11	
	12	
	13	
	14	
	15	
	16	
	17	
	18	
	19	
	TOTAL	
_		

Answer all questions in the spaces provided.

1
$$z = 3 - i$$

Determine the value of zz*

Circle your answer.

[1 mark]

$$\sqrt{10}$$

$$10 - 2i$$

$$10 - 2i$$
 $10 + 2i$

2 Three matrices A, B and C are given by

$$\mathbf{A} = \begin{bmatrix} 5 & 2 & -3 \\ 0 & 7 & 6 \\ 4 & 1 & 0 \end{bmatrix}, \qquad \qquad \mathbf{B} = \begin{bmatrix} 1 & 0 \\ 3 & -5 \\ -2 & 6 \end{bmatrix} \qquad \text{and } \mathbf{C} = \begin{bmatrix} 6 & 4 & 3 \\ 1 & 2 & 0 \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} 1 & 0 \\ 3 & -5 \\ -2 & 6 \end{bmatrix}$$

and
$$\boldsymbol{C} = \begin{bmatrix} 6 & 4 & 3 \\ 1 & 2 & 0 \end{bmatrix}$$

Which of the following cannot be calculated?

Circle your answer.

[1 mark]

$$A^2$$

Which of the following functions has the fourth term $-\frac{1}{720}x^6$ in its Maclaurin series 3 expansion?

Circle your answer.

[1 mark]

$$\sin x$$

$$\cos x$$

$$e^x$$

$$ln(1 + x)$$

4 Sketch the graph given by the polar equation

$$r = \frac{a}{\cos \theta}$$

where a is a positive constant.

[2 marks]

O Initial line

		$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	0
5	Describe fully the transformation given by the matrix	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	0
		0	0	1_

[3 marks]

0 3

6 (a) Matthew is finding a formula for the inverse function arsinh *x*. He writes his steps as follows:

Let
$$y = \sinh x$$

$$y = \frac{1}{2}(e^x - e^{-x})$$

$$2y = e^x - e^{-x}$$

$$0 = e^x - 2y - e^{-x}$$

$$0 = (e^x)^2 - 2ye^x - 1$$

$$0 = (e^x - y)^2 - y^2 - 1$$

$$y^2 + 1 = (e^x - y)^2$$

$$\pm \sqrt{y^2 + 1} = e^x - y$$

$$y \pm \sqrt{y^2 + 1} = e^x$$

To find the inverse function, swap x and y: $x \pm \sqrt{x^2 + 1} = e^y$

$$\ln\left(x \pm \sqrt{x^2 + 1}\right) = y$$

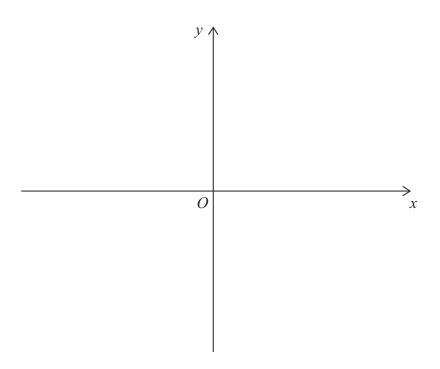
$$\operatorname{arsinh} x = \ln \Bigl(x \pm \sqrt{x^2 + 1} \, \Bigr)$$

dentify, and explain, the error in Matthew's proof.	[2 marks]

(b) S	Solve $\ln\left(x+\sqrt{x^2+1}\right)=3$	
-, 0		[1 mark]
_		
		
_		
_		
_		
_		
_		
_		
F	Find two invariant points under the transformation given by $\begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$	
F	Find two invariant points under the transformation given by $\begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$	[2 marks]
F	Find two invariant points under the transformation given by $\begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$	[2 marks]
F	Find two invariant points under the transformation given by $\begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$	[2 marks]
F -	Find two invariant points under the transformation given by $\begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$	[2 marks]
F - -	Find two invariant points under the transformation given by $\begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$	[2 marks]
F - -	Find two invariant points under the transformation given by $\begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$	[2 marks]
F - - -	Find two invariant points under the transformation given by $\begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$	[2 marks]
F 	Find two invariant points under the transformation given by $\begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$	[2 marks]
F 	Find two invariant points under the transformation given by $\begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$	[2 marks]
F	Find two invariant points under the transformation given by $\begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$	[2 marks]
F	Find two invariant points under the transformation given by $\begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$	[2 marks]
F	Find two invariant points under the transformation given by $\begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$	[2 marks]
F	Find two invariant points under the transformation given by $\begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$	[2 marks]
F	Find two invariant points under the transformation given by $\begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$	[2 marks]
F	Find two invariant points under the transformation given by $\begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$	[2 marks]

Do not write
outside the
box

8	2-3i is one root of the equation	
	$z^3 + mz + 52 = 0$	
	where m is real.	
8 (a)	Find the other roots.	[3 marks]



8 (b)	Determine the value of m .	[2 marks]

9 (a) Sketch the graph of $y^2 = 4$.
--

[1 mark]

9 (b) Ben is using a 3D printer to make a plastic bowl which holds exactly 1000 cm³ of water.

Ben models the bowl as a region which is rotated through 2π radians about the x-axis.

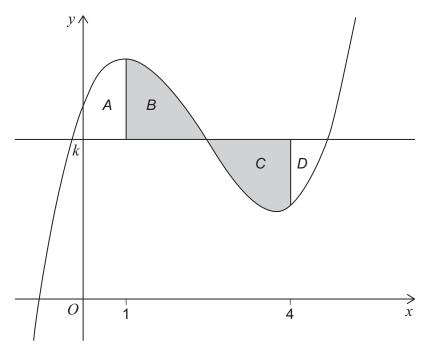
He uses the finite region enclosed by the lines x=d and y=0 and the curve with equation $y^2=4x$ for $y\geq 0$

9 (b) (i) Find the depth of the bowl to the nearest millimetre.

[4 marks]

(ii) What assumption has Ben made about the bowl?	[1 mark]
	[

Prove by induction that, for all integers $n \ge 1$,	
$\sum_{r=1}^{n} r^3 = \frac{1}{4}n^2(n+1)^2$	
	[4 marks]
	·


Hence show	that	
	$\sum_{r=1}^{2n} r(r-1)(r+1) = n(n+1)(2n-1)(2n+1)$	
		[4 marks]

11 Four finite regions A, B, C and D are enclosed by the curve with equation

$$y = x^3 - 7x^2 + 11x + 6$$

and the lines y = k, x = 1 and x = 4, as shown in the diagram below.

The areas of B and C are equal.

Eind	tho	value	of la	
Fina	tne	value	OT K .	

[3 marks]

Show that the matrix $\begin{bmatrix} 5-k & 2 \\ k^3+1 & k \end{bmatrix}$ is singular when $k=3$	[4] maranta
	[1 mark]
Find the values of k for which the matrix $\begin{bmatrix} 5-k & 2 \\ k^3+1 & k \end{bmatrix}$ has	s a negative determinant
The the values of k is which the matrix $\begin{bmatrix} k^3 + 1 & k \end{bmatrix}$	o a nogativo dotominant.
Fully justify your answer.	
Fully justify your answer.	[5 marks]
Fully justify your answer.	[5 marks]
Fully justify your answer.	[5 marks]
Fully justify your answer.	[5 marks]
Fully justify your answer.	[5 marks]
Fully justify your answer.	[5 marks]
Fully justify your answer.	[5 marks]
Fully justify your answer.	[5 marks]
Fully justify your answer.	[5 marks]
Fully justify your answer.	[5 marks]
Fully justify your answer.	[5 marks]
Fully justify your answer.	[5 marks]
Fully justify your answer.	[5 marks]
Fully justify your answer.	[5 marks]
Fully justify your answer.	[5 marks]
Fully justify your answer.	[5 marks]
Fully justify your answer.	[5 marks]
Fully justify your answer.	[5 marks]

box

Do not write outside the The graph of the rational function y = f(x) intersects the x-axis exactly once at 13 (-3, 0)The graph has exactly two asymptotes, y = 2 and x = -113 (a) Find f(x)[2 marks] 13 (b) Sketch the graph of the function. [3 marks] y0

Do not	writ
outside	the
box	(

13 (c)	Find the range of values of x for which $f(x) \le 5$	[4 marks]



$$|z - 3| = 2$$

[1 mark]

(b) There is a unique complex number <i>w</i> that satisfies both	
$ w-3 =2$ and $arg(w+1)=\alpha$	
where α is a constant such that $0<\alpha<\pi$	
(b) (i) Find the value of α .	[2 marks]
	[2 marks]
	······································
(b) (ii) Express w in the form $r(\cos \theta + i \sin \theta)$.	
Give each of r and θ to two significant figures.	[4 marks]
	[:]
	······
	······································

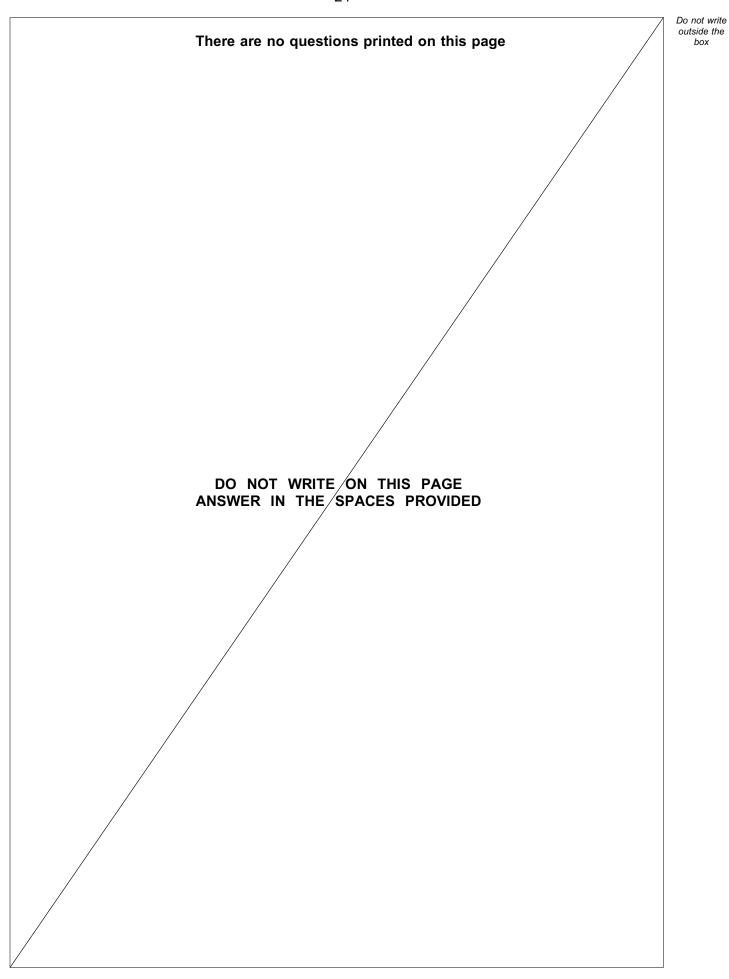
15 (a)	Show that	
	$\frac{1}{r+2} - \frac{1}{r+3} = \frac{1}{(r+2)(r+3)}$	[1 mark]
15 (b)	Use the method of differences to show that	
	$\sum_{r=1}^{n} \frac{1}{(r+2)(r+3)} = \frac{n}{3(n+3)}$	ß marks]

Two matrices A and B satisfy the equation	
AB = I + 2A	
where I is the identity matrix and $\mathbf{B} = \begin{bmatrix} 3 & -2 \\ -4 & 8 \end{bmatrix}$	
Find A .	
	[3 marks]

Find the exact solution	to the equation	
	$\sinh\theta(\sinh\theta+\cosh\theta)=1$	
		[4 marks]
		_

$\alpha,~\beta$ and γ are the real roots of the cubic equation	
$x^3 + mx^2 + nx + 2 = 0$	
By considering $(\alpha - \beta)^2 + (\gamma - \alpha)^2 + (\beta - \gamma)^2$, prove that	
$m^2 \geq 3n$	
$m \geq 3n$	[4 marks]

22 Do not write outside the A theme park has two zip wires. box Sarah models the two zip wires as straight lines using coordinates in metres. The ends of one wire are located at (0, 0, 0) and (0, 100, -20)The ends of the other wire are located at (10, 0, 20) and (-10, 100, -5)Use Sarah's model to find the shortest distance between the zip wires. [7 marks]



19

19 (a)

		Do not v outside box
19 (b)	State one way in which Sarah's model could be refined.	
10 (2)	Claic one way in which caraire model could be formed.	[1 mark]
	END OF QUESTIONS	

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.
	Copyright © 2018 AQA and its licensors. All rights reserved.

