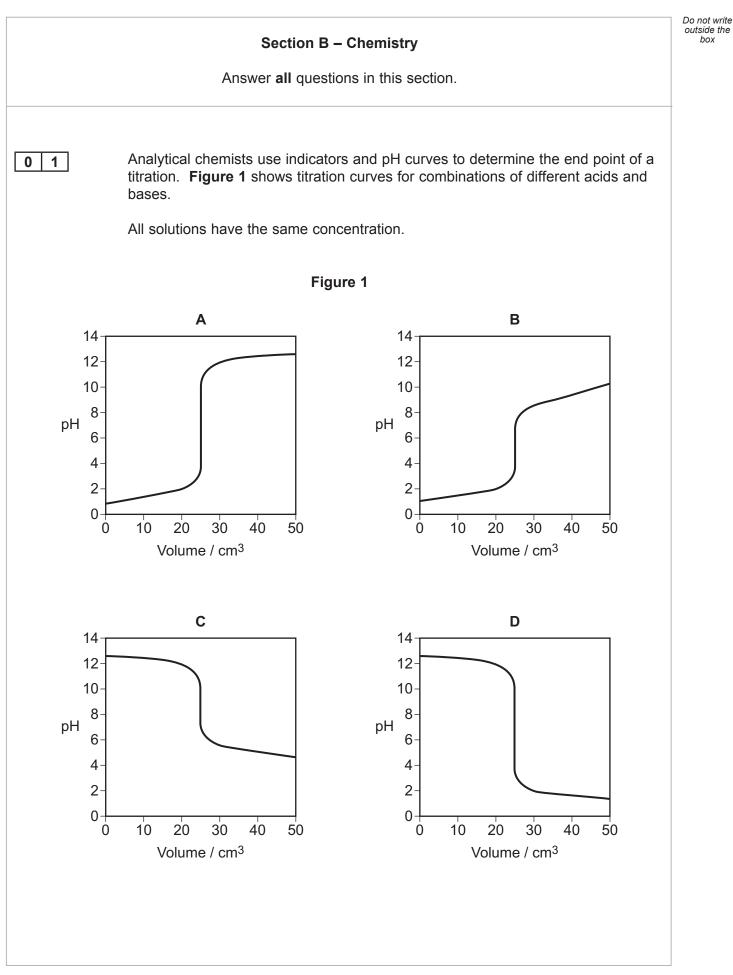
ly in block capitals.
Candidate number
ure

Level 3 Certificate and Extended Certificate in Applied Science **KEY CONCEPTS IN SCIENCE**

Unit Number: ASC1

Section B – ASC1/C (Chemistry)

Tuesday 23 January 2018 Materials For this paper you must have: • a calculator	Morning	You are advised t	Time allowed: 1 hour 30 minutes You are advised to spend approximately 30 minutes on this section.		
Periodic Tableformulae sheet.				iner's Use	
 Instructions Use black ink or black ball-point pen. Answer all questions in each section. You must answer the questions in the 	spaces provider	٩	Question	r's Initials Mark	
 Do not write outside the box around e Do all rough work in this book. Cross be marked. 	blank pages.	1 2			
Information		3			
 You will be provided with a copy of the There are three sections in this paper Section A – Biology Section B – Ch 	TOTAL				


- The marks for questions are shown in brackets.
- The maximum mark for this paper is 60 and the maximum mark for this section is 20.

Advice

Read each question carefully.

	ethanoic acid (a weak acid) to 25 cm ³	of sodium hydroxide	[3 marks]
	ammonia solution (a weak base) to 25	5 cm ³ of hydrochloric	acid
	hydrochloric acid to 25 cm ³ of sodium	hydroxide	
1.2	Table 1 shows some acid-base indication change colour.	ators and the pH rang	ges over which they
	Table	1	
	Indicator	pH range	
	Bromophenol blue	3.0–4.6	
	Phenol red	6.8–8.2	
	Bromothymol blue	6.0–7.6	
	Thymolphthalein State which indicator from Table 1 co curve D but not in the titration that pro		ation that produces
	State which indicator from Table 1 co curve D but not in the titration that pro Explain your choice.	uld be used in the titr oduces curve C .	[2 marks]
	State which indicator from Table 1 co curve D but not in the titration that pro Explain your choice.	uld be used in the titr oduces curve C .	[2 marks]
	State which indicator from Table 1 co curve D but not in the titration that pro Explain your choice.	uld be used in the titr oduces curve C .	[2 marks]
	State which indicator from Table 1 co curve D but not in the titration that pro Explain your choice.	uld be used in the titr oduces curve C .	[2 marks]
	State which indicator from Table 1 co curve D but not in the titration that pro Explain your choice. Indicator Explanation	uld be used in the titr oduces curve C .	[2 marks]
	State which indicator from Table 1 co curve D but not in the titration that pro Explain your choice.	uld be used in the titr oduces curve C .	[2 marks]
	State which indicator from Table 1 co curve D but not in the titration that pro Explain your choice. Indicator Explanation	uld be used in the titr oduces curve C .	[2 marks]

Do not write outside the box

0 1 . 3

An analytical chemist at a vinegar manufacturer used titration to monitor the concentration of ethanoic acid in vinegar.

The chemist:

- diluted 50.0 \mbox{cm}^3 of the vinegar with distilled water to make a total volume of 500 \mbox{cm}^3
- titrated a 25.0 cm³ sample against a standard solution of 0.100 mol dm⁻³ NaOH.

NaOH	+	CH3COOH	>	CH ₃ COONa	+	H ₂ O
sodium hydroxide	+	ethanoic acid		sodium ethanoate	+	water

The results are shown in Table 2.

Table 2

	Titration				
Volume / cm ³	Rough	1	2	3	
At start	0.00	20.20	0.00	14.45	
At end	20.20	39.40	14.45	33.55	
Used	20.20	19.20	14.45	19.10	

Calculate the average volume of sodium hydroxide used in the experiment. [1 mark]

Average volume = _____ cm³

0 1 . 4

Calculate the number of moles of sodium hydroxide used in the experiment. Use your answer from Question **01.3**.

[1 mark]

Number of moles used = _____

0 1 . 5	State the number of moles of ethanoic acid that reacted with the number of sodium hydroxide in Question 01.4 .	of moles [1 mark]	Do not write outside the box
0 1 . 6	Calculate the concentration of the original sample of ethanoic acid. [2	marks]	
	Concentration = n	nol dm ^{_3}	10
	Turn over for the next question		
	Tu	rn over ►	

Do not write outside the box

6

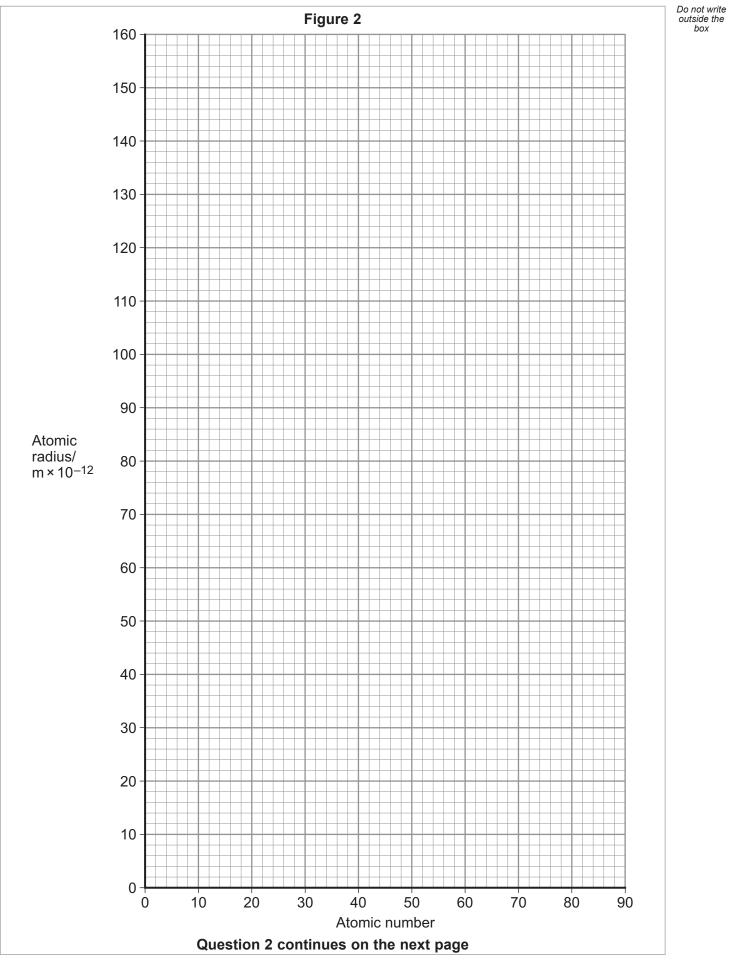
0 2

Research chemists use trends in the properties of some elements to predict the properties of other elements.

Table 3 shows the values of atomic radii for the elements in Group 0 that the research chemist found.

Element	Atomic Number	Atomic Radius /m × 10 ⁻¹²
Helium	2	28
Neon	10	58
Argon	18	106
Krypton	36	116
Xenon	54	140
Radon	86	150

Table 3


0 2 . 1

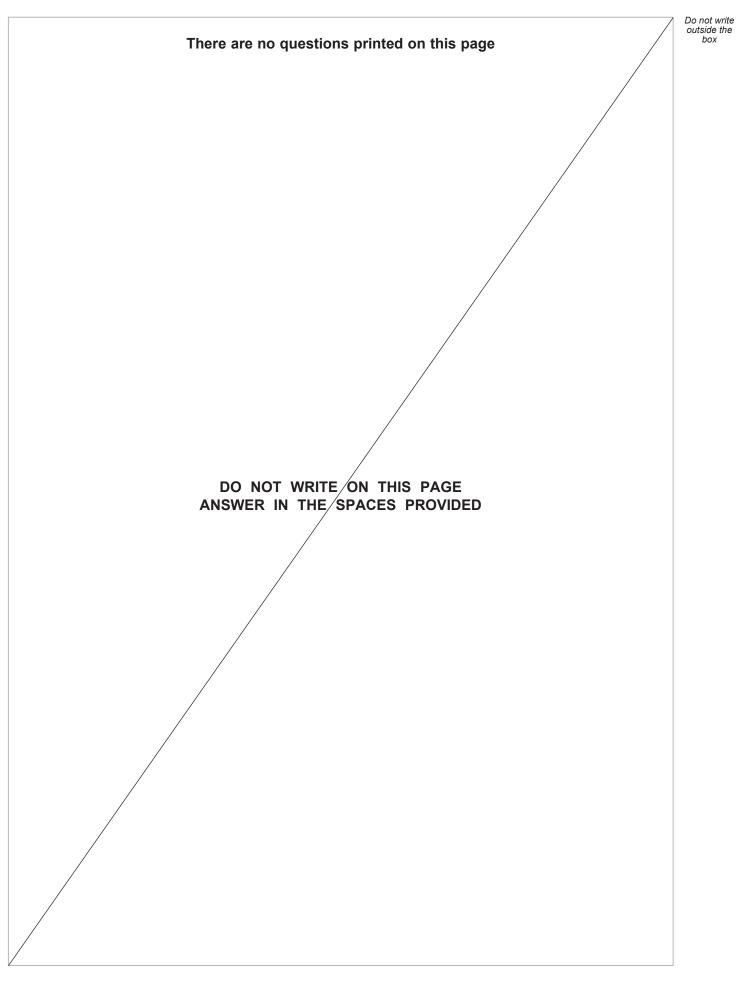
Plot a graph of atomic radius against atomic number on Figure 2.

Draw a line of best fit.

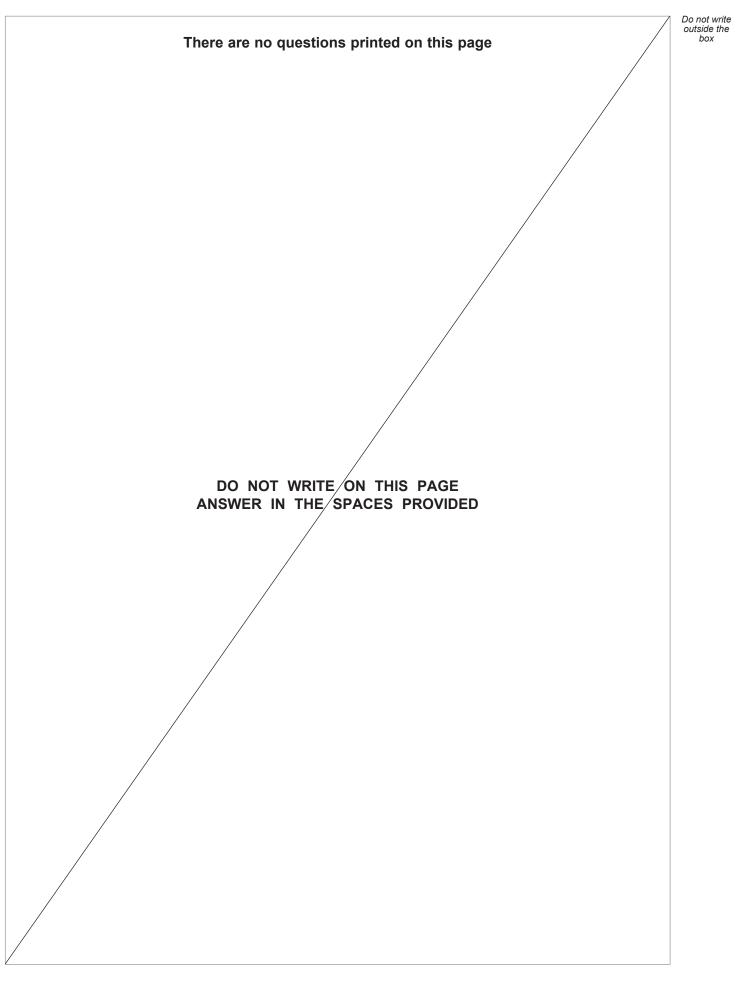
[2 marks]

Turn over ►

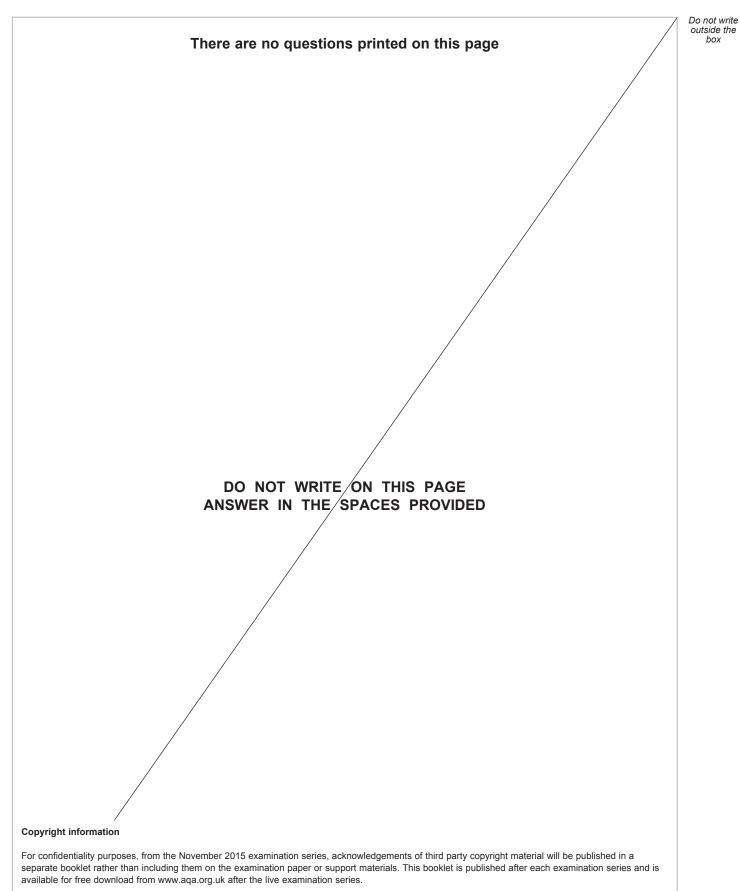
Do not write		
outside the		
box		


5

02.2	Identify the anomalous result. [1 mark]
02.3	Explain why atomic radius increases as atomic number increases in Group 0. [2 marks]



0 3	A large proportion of the elements of the Periodic Table are metals.	Do not write outside the box
03.1	Aluminium is a metal widely used in the aerospace industry. Give the electron configuration of an atom of aluminium, Al. [1 mark]	
03.2	Describe the bonding in aluminium. Include a labelled diagram in your answer. [4 marks]	
	END OF QUESTIONS	5



Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2018 AQA and its licensors. All rights reserved.

