# 

| Please write clearly in block capitals. |                  |
|-----------------------------------------|------------------|
| Centre number                           | Candidate number |
| Surname                                 |                  |
| Forename(s)                             |                  |
| Candidate signature                     |                  |

# GCSE CHEMISTRY

Foundation Tier Paper 1

Thursday 17 May 2018

Morning

Time allowed: 1 hour 45 minutes

#### Materials

For this paper you must have:

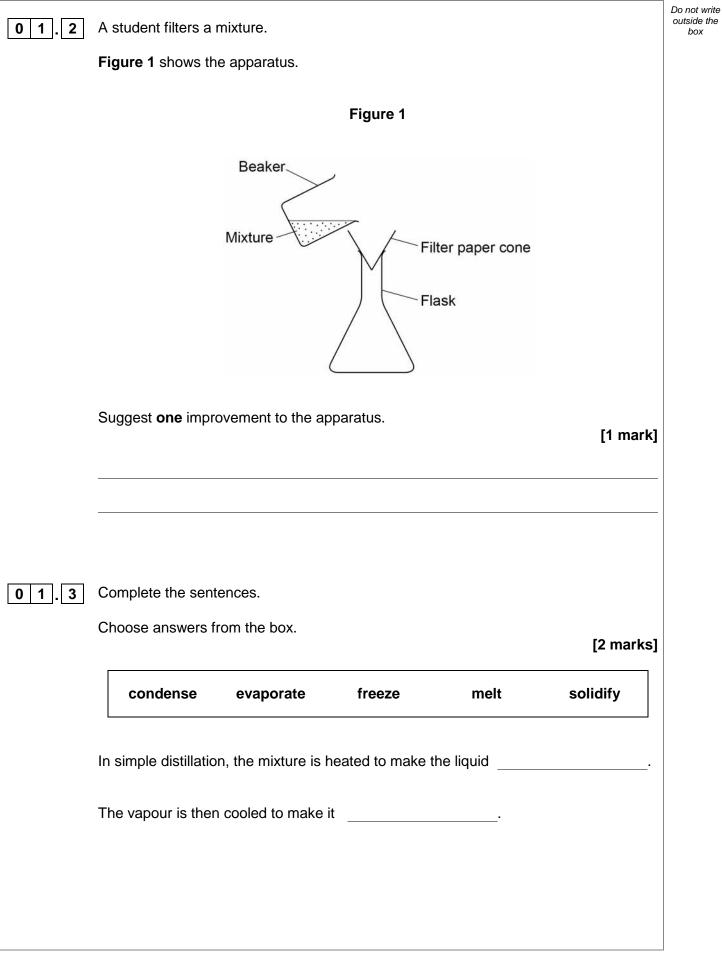
- a ruler
- a scientific calculator
- the periodic table (enclosed).

#### Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

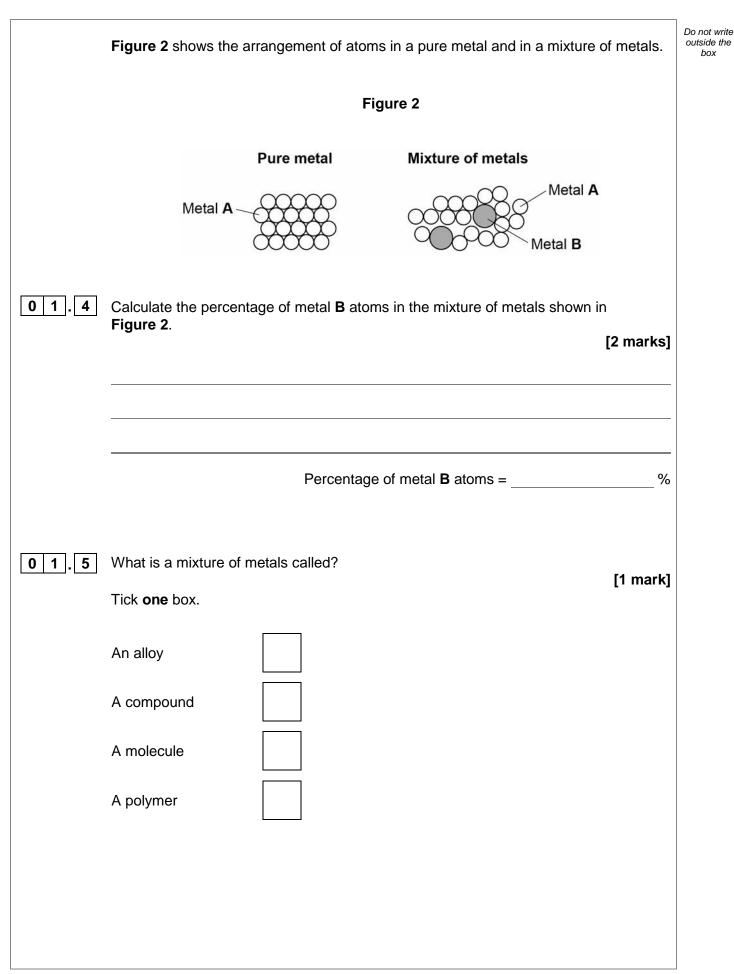
#### Information

- There are 100 marks available on this paper.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.


| For Exam | iner's Use |
|----------|------------|
| Question | Mark       |
| 1        |            |
| 2        |            |
| 3        |            |
| 4        |            |
| 5        |            |
| 6        |            |
| 7        |            |
| 8        |            |
| 9        |            |
| 10       |            |
| TOTAL    |            |

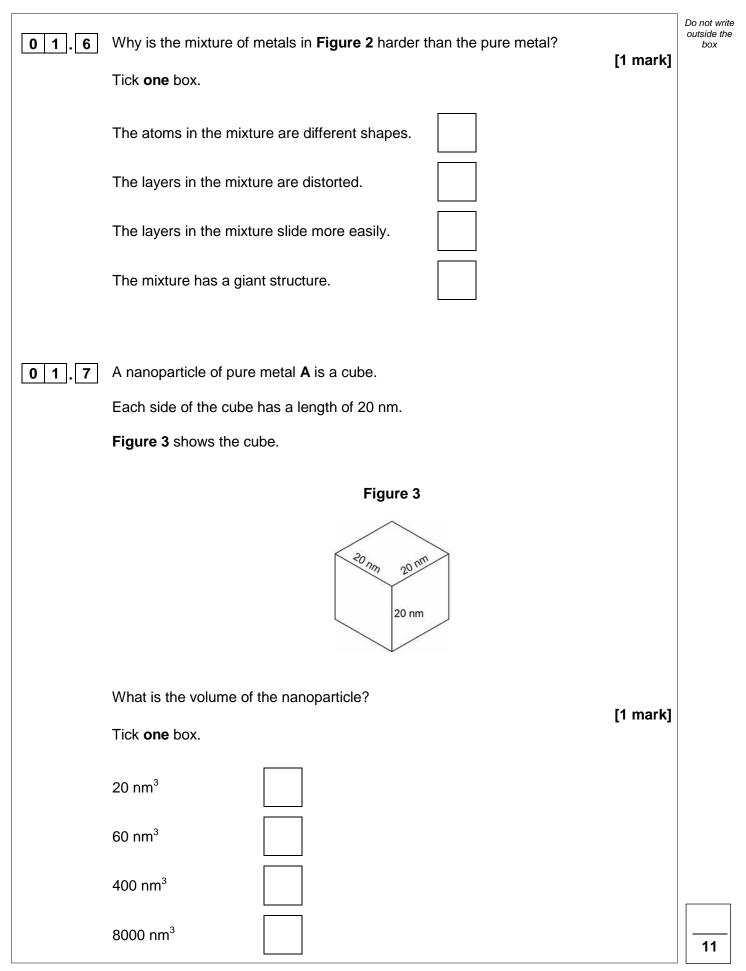





| 0 1   | This question is about mixtures.                        |                                               | Do not write<br>outside the<br>box |
|-------|---------------------------------------------------------|-----------------------------------------------|------------------------------------|
| 0 1.1 | Substances are separated from a mixture using di        | ifferent methods.                             |                                    |
|       | Draw <b>one</b> line from each substance and mixture to | o the best method of separation.<br>[3 marks] |                                    |
|       | Substance and mixture                                   | Method of separation                          |                                    |
|       |                                                         | Chromatography                                |                                    |
|       | Ethanol from ethanol and<br>water                       |                                               |                                    |
|       |                                                         | Crystallisation                               |                                    |
|       |                                                         | []                                            |                                    |
|       | Salt from sea water                                     | Electrolysis                                  |                                    |
|       |                                                         |                                               |                                    |
|       | The different colours in                                | Filtration                                    |                                    |
|       | black ink                                               | Fractional distillation                       |                                    |
|       |                                                         | Fractional distillation                       |                                    |
|       |                                                         |                                               |                                    |
|       |                                                         |                                               |                                    |
|       |                                                         |                                               |                                    |
|       |                                                         |                                               |                                    |
|       |                                                         |                                               |                                    |
|       |                                                         |                                               |                                    |
|       |                                                         |                                               |                                    |
|       |                                                         |                                               |                                    |
|       |                                                         |                                               |                                    |
|       |                                                         |                                               |                                    |
|       |                                                         |                                               |                                    |








box











| 0 2  | The halogens are elements in Group 7.                                                                                                     | Do not write<br>outside the<br>box |
|------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| 02.1 | Bromine is in Group 7.                                                                                                                    |                                    |
|      | Give the number of electrons in the outer shell of a bromine atom. [1 mark]                                                               |                                    |
| 02.2 | Bromine reacts with hydrogen. The gas hydrogen bromide is produced.<br>What is the structure of hydrogen bromide?<br>Tick <b>one</b> box. |                                    |
|      | Giant covalent   Ionic lattice   Metallic structure   Small molecule                                                                      |                                    |
| 02.3 | What is the formula for fluorine gas?       [1 mark]         Tick one box.                                                                |                                    |
|      |                                                                                                                                           |                                    |



Do not write outside the box

A student mixes solutions of halogens with solutions of their salts.

 Table 1 shows the student's observations.

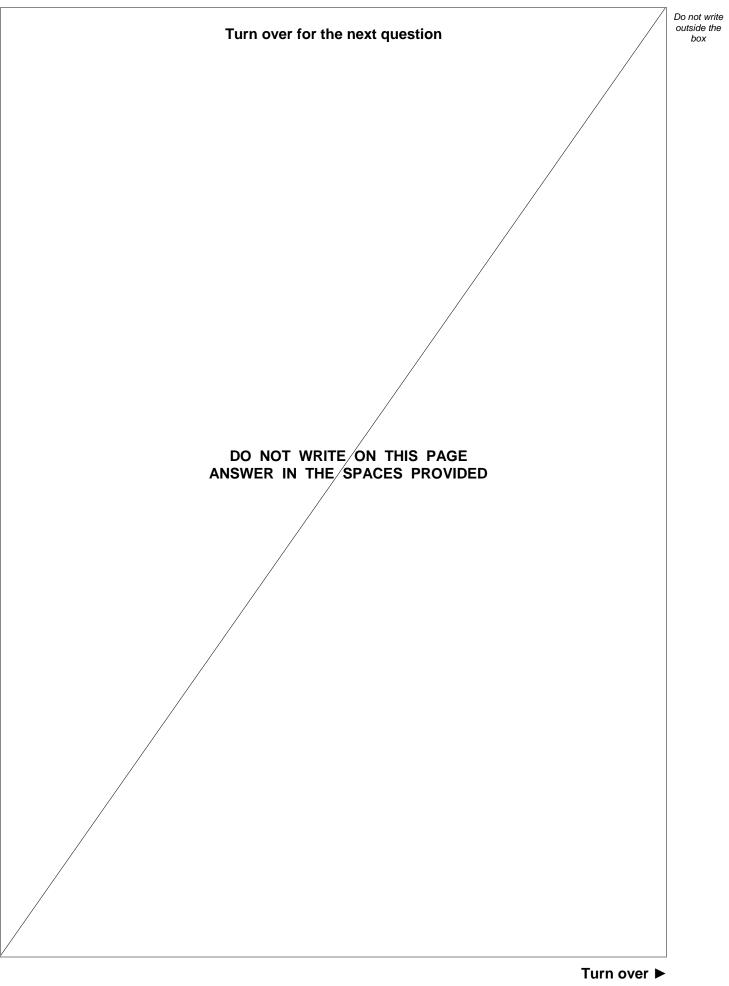
#### Table 1

|                          | Potassium chloride<br>(colourless) | Potassium bromide<br>(colourless) | Potassium iodide<br>(colourless) |
|--------------------------|------------------------------------|-----------------------------------|----------------------------------|
| Chlorine<br>(colourless) |                                    | Solution turns orange             | Solution turns brown             |
| Bromine<br>(orange)      | No change                          |                                   | Solution turns brown             |
| lodine<br>(brown)        | No change                          | No change                         |                                  |

**0 2**. **4** Explain how the reactivity of the halogens changes going down Group 7.

Use the results in Table 1.

[3 marks]


#### Question 2 continues on the next page



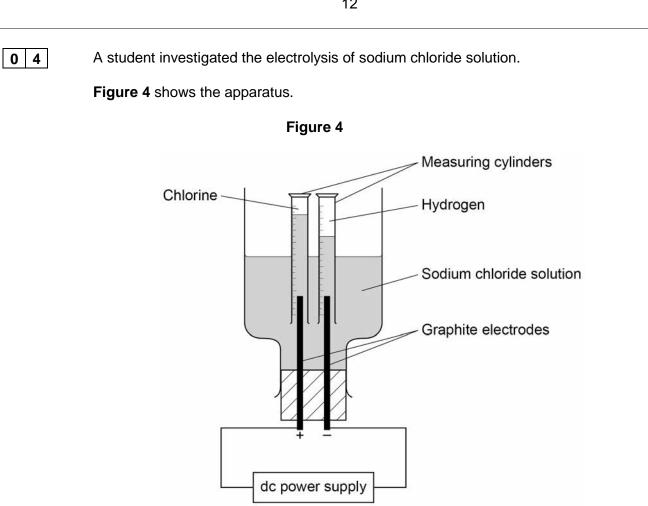
8

|      | A company uses chlorine to produce titanium chloride from titanium dioxide.                         | Do not write<br>outside the<br>box |
|------|-----------------------------------------------------------------------------------------------------|------------------------------------|
| 02.5 | What is the relative formula mass ( $M_r$ ) of titanium dioxide, TiO <sub>2</sub> ?                 |                                    |
|      | Relative atomic masses ( $A_r$ ): O = 16 Ti = 48 [1 mark]                                           |                                    |
|      | Tick <b>one</b> box.                                                                                |                                    |
|      | 64                                                                                                  |                                    |
|      | 80                                                                                                  |                                    |
|      | 128                                                                                                 |                                    |
|      | 768                                                                                                 |                                    |
|      |                                                                                                     |                                    |
| 02.6 | The company calculates that 500 g of titanium dioxide should produce 1.2 kg of titanium chloride.   |                                    |
|      | However, the company finds that 500 g of titanium dioxide only produces 900 g of titanium chloride. |                                    |
|      | Calculate the percentage yield. [2 marks]                                                           |                                    |
|      |                                                                                                     |                                    |
|      |                                                                                                     |                                    |
|      |                                                                                                     |                                    |
|      | Percentage yield =%                                                                                 |                                    |
|      |                                                                                                     | 9                                  |
|      |                                                                                                     |                                    |
|      |                                                                                                     |                                    |
|      |                                                                                                     |                                    |



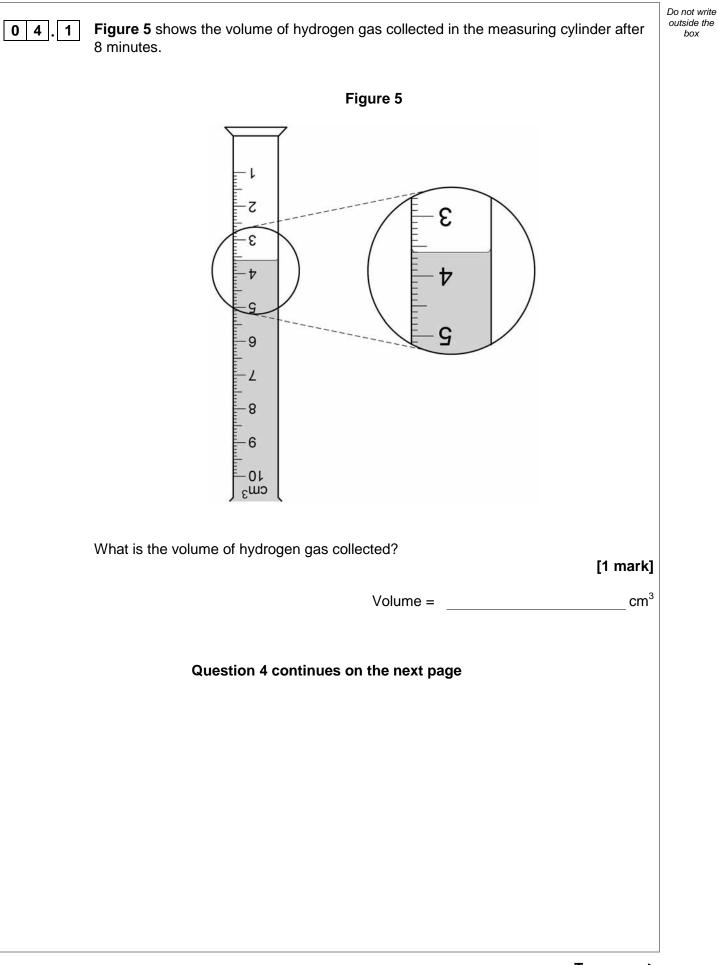




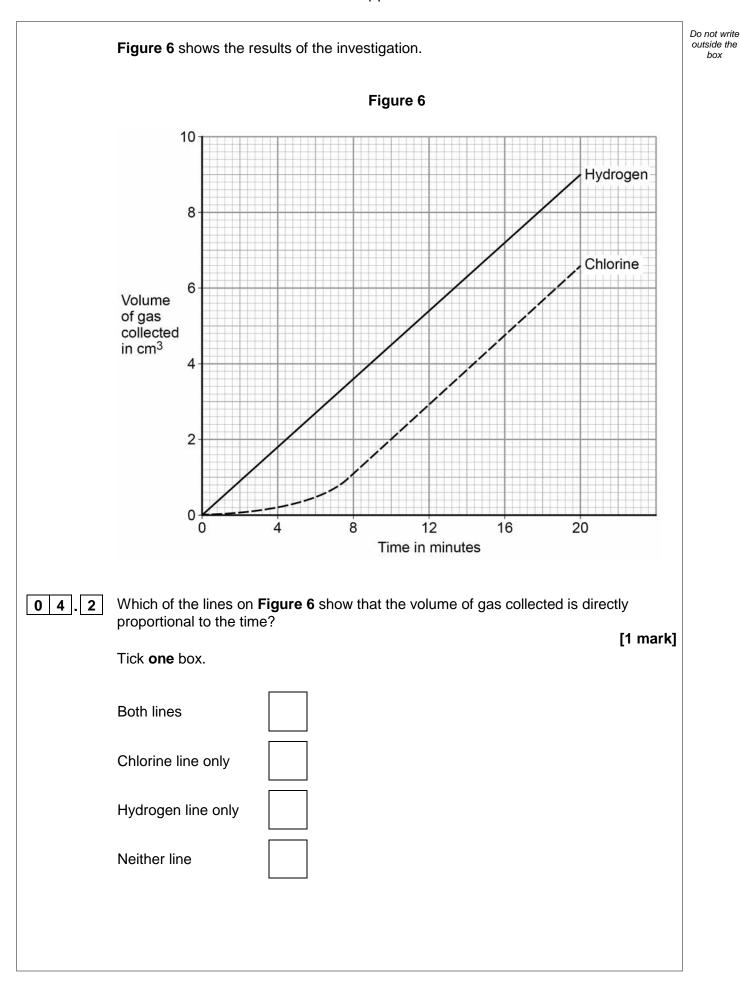

|       |                                                                                    |                                   |                                | Do not with                        |  |  |
|-------|------------------------------------------------------------------------------------|-----------------------------------|--------------------------------|------------------------------------|--|--|
| 0 3   |                                                                                    |                                   |                                | Do not write<br>outside the<br>box |  |  |
| 0 3.1 | . Complete the sentences.                                                          |                                   |                                |                                    |  |  |
|       | Choose answers fro                                                                 | m the box.                        |                                |                                    |  |  |
|       | Each word may be u                                                                 | ised once, more than once, or n   | ot at all.<br><b>[5 marks]</b> |                                    |  |  |
|       | electro                                                                            | n ion n                           | eutron                         |                                    |  |  |
|       |                                                                                    |                                   |                                |                                    |  |  |
|       |                                                                                    | nucleus proton                    |                                |                                    |  |  |
|       | The centre of the ato                                                              | om is the                         |                                |                                    |  |  |
|       | The two types of par                                                               | ticle in the centre of the atom a | e the proton                   |                                    |  |  |
|       | and the                                                                            |                                   |                                |                                    |  |  |
|       | James Chadwick pro                                                                 | oved the existence of the         |                                |                                    |  |  |
|       | Niels Bohr suggested particles orbit the centre of the atom. This type of particle |                                   |                                |                                    |  |  |
|       | is the                                                                             |                                   |                                |                                    |  |  |
|       | The two types of particle with the same mass are the neutron                       |                                   |                                |                                    |  |  |
|       |                                                                                    | ·                                 |                                |                                    |  |  |
|       |                                                                                    |                                   |                                |                                    |  |  |
|       |                                                                                    |                                   |                                |                                    |  |  |
|       | Table 2 shows inform                                                               | nation about two isotopes of ele  | ement <b>X</b> .               |                                    |  |  |
|       |                                                                                    |                                   |                                |                                    |  |  |
|       |                                                                                    | Table 2                           |                                |                                    |  |  |
|       |                                                                                    | Mass number                       | Percentage (%) abundance       |                                    |  |  |
|       | Isotope 1                                                                          | 63                                | 70                             |                                    |  |  |
|       | Isotope 2                                                                          | 65                                | 30                             |                                    |  |  |
|       | -                                                                                  |                                   |                                | 1                                  |  |  |



| 03.2          | Calculate the relative atomic mass $(A_r)$ of element <b>X</b> using the equation:                                                                        | Do not write<br>outside the<br>box |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| $A_{\rm r}$ = | (mass number × percentage) of isotope 1 + (mass number × percentage) of isotope 2<br>100                                                                  |                                    |
|               | Use Table 2.                                                                                                                                              |                                    |
|               | Give your answer to 1 decimal place. [2 marks]                                                                                                            |                                    |
|               |                                                                                                                                                           |                                    |
|               |                                                                                                                                                           |                                    |
|               | A <sub>r</sub> =                                                                                                                                          |                                    |
|               |                                                                                                                                                           |                                    |
| 03.3          | Suggest the identity of element <b>X</b> .                                                                                                                |                                    |
|               | Use the periodic table. [1 mark]                                                                                                                          |                                    |
|               | Element X is                                                                                                                                              |                                    |
|               | The radius of an atom of element $\mathbf{V}$ is $1.2 \times 10^{-10}$ m                                                                                  |                                    |
| 0 3.4         | The radius of an atom of element <b>X</b> is $1.2 \times 10^{-10}$ m<br>The radius of the centre of the atom is $\frac{1}{10000}$ the radius of the atom. |                                    |
|               |                                                                                                                                                           |                                    |
|               | Calculate the radius of the centre of an atom of element <b>X</b> .<br>Give your answer in standard form.                                                 |                                    |
|               | [2 marks]                                                                                                                                                 |                                    |
|               |                                                                                                                                                           |                                    |
|               |                                                                                                                                                           |                                    |
|               |                                                                                                                                                           |                                    |
|               | Radius =m                                                                                                                                                 | 10                                 |


Do not write outside the

box



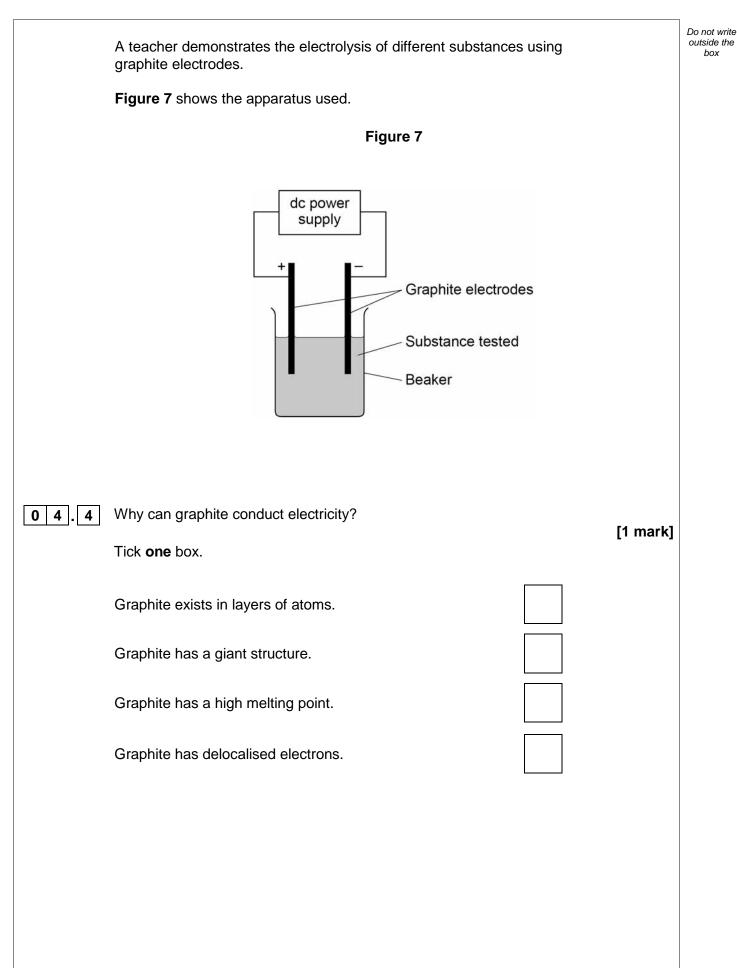

The student measured the volume of gas collected in each measuring cylinder every minute for 20 minutes.












Do not write outside the box

15

# Which of the lines on Figure 6 show a positive correlation between the volume of gas 04. 3 collected and time? [1 mark] Tick **one** box. **Both lines** Chlorine line only Hydrogen line only Neither line Question 4 continues on the next page







Do not write outside the box

# **0 4**. **5** The teacher demonstrates the electrolysis of:

- molten zinc chloride
- potassium bromide solution.

Complete **Table 3** to predict the products.

Choose answers from the box.

#### [4 marks]

| chlorine | bromine | hydrogen | oxygen | potassium | zinc |
|----------|---------|----------|--------|-----------|------|
|          |         |          |        |           |      |

#### Table 3

| Substance<br>electrolysed  | Product at cathode (negative electrode) | Product at anode (positive electrode) |
|----------------------------|-----------------------------------------|---------------------------------------|
| Molten zinc chloride       |                                         |                                       |
| Potassium bromide solution |                                         |                                       |

#### Turn over for the next question

8



A student investigated the mass of copper oxide produced by heating copper carbonate.

This is the method used.

0 5

- 1. Weigh an empty test tube.
- 2. Weigh 2.00 g of copper carbonate into the test tube.
- 3. Heat the copper carbonate until there appears to be no further change.
- 4. Re-weigh the test tube and copper oxide produced.
- 5. Subtract the mass of the empty tube to find the mass of copper oxide.
- 6. Repeat steps 1–5 twice.
- 7. Repeat steps 1–6 with different masses of copper carbonate.

Table 4 shows the student's results.

#### Table 4

| Mass of copper | Mass of copper oxide in g |         |         |      |
|----------------|---------------------------|---------|---------|------|
| carbonate in g | Trial 1                   | Trial 2 | Trial 3 | Mean |
| 2.00           | 1.29                      | 1.27    | 1.31    | 1.29 |
| 4.00           | 2.89                      | 2.57    | 2.59    | 2.58 |
| 6.00           | 3.85                      | 3.90    | 3.87    | 3.87 |
| 8.00           | 5.12                      | 5.15    | 5.09    | Х    |
| 10.00          | 6.42                      | 6.45    | 6.45    | 6.44 |

The equation for the reaction is:

 $CuCO_3(s) \rightarrow CuO(s) + CO_2(g)$ 

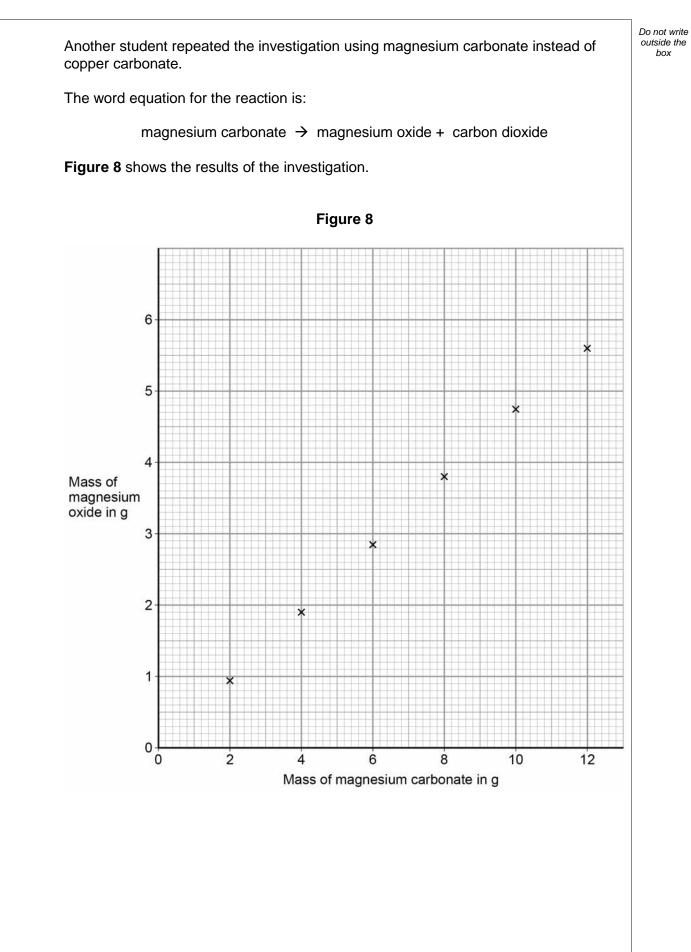
Complete the sentence.

The state symbol shows carbon dioxide is a



0 5

1


[1 mark]

Do not write outside the box

| 1 | 9 |
|---|---|
|   |   |

| 0 5.2 | Why do the contents of the test tube lose mass in the investigation? [1 mark]                    | Do no<br>outsie<br>b |
|-------|--------------------------------------------------------------------------------------------------|----------------------|
| 0 5.3 | Calculate the mean mass X in Table 4. [1 mark]                                                   |                      |
|       | X = g                                                                                            |                      |
| 0 5.4 | One of the results in <b>Table 4</b> is anomalous.<br>Which result is anomalous?                 |                      |
|       | [1 mark] Mass of copper carbonateg Trial                                                         |                      |
| 0 5.5 | Suggest how the investigation could be improved to make sure the reaction is complete. [2 marks] |                      |
|       |                                                                                                  |                      |
|       |                                                                                                  |                      |
|       |                                                                                                  |                      |

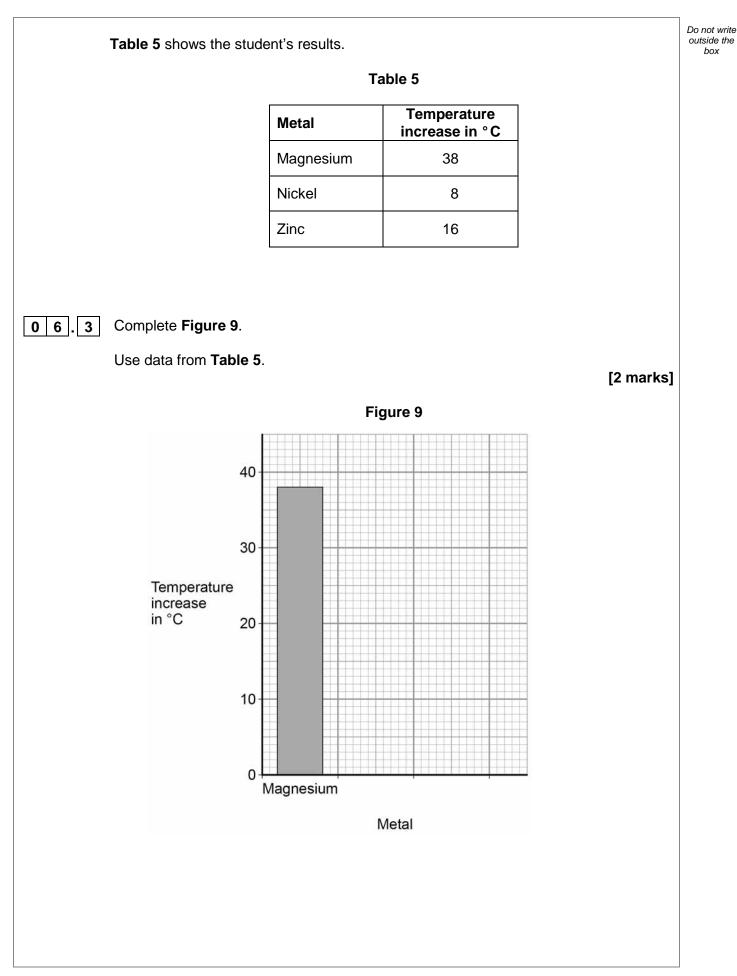






| 0 5.6 | Draw a line of best fit on <b>Figure 8</b> . [1 mark]                                            | Do not write<br>outside the<br>box |
|-------|--------------------------------------------------------------------------------------------------|------------------------------------|
| 05.7  | Determine the mass of magnesium oxide produced by 8.4 g of magnesium carbonate.<br>Use Figure 8. |                                    |
|       | Mass =g                                                                                          |                                    |
| 05.8  | Calculate the mass of magnesium oxide produced when 168 g of magnesium carbonate is heated.      |                                    |
|       | Use your answer to Question 05.7 [2 marks]                                                       |                                    |
|       |                                                                                                  |                                    |
|       |                                                                                                  |                                    |
|       |                                                                                                  |                                    |
|       | Mass of magnesium oxide produced =g                                                              |                                    |
|       | Turn over for the next question                                                                  | 10                                 |
|       |                                                                                                  |                                    |
|       |                                                                                                  |                                    |
|       |                                                                                                  |                                    |
|       |                                                                                                  |                                    |
|       |                                                                                                  |                                    |
|       |                                                                                                  |                                    |
|       |                                                                                                  |                                    |

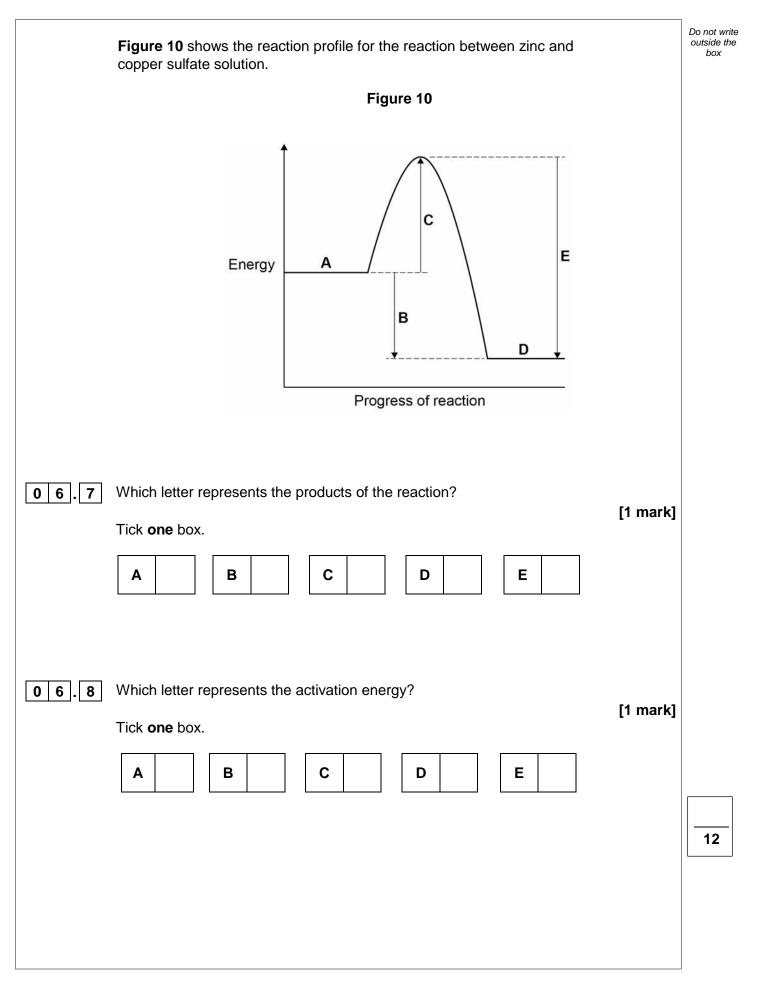



|                                                         |                                                                                 |                                       | 1                                  |
|---------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------|------------------------------------|
| 0 6                                                     | A student investigated the temperature chan metals and copper sulfate solution. | nge in displacement reactions between | Do not write<br>outside the<br>box |
|                                                         | This is the method used.                                                        |                                       |                                    |
|                                                         | 1. Measure 50 cm <sup>3</sup> of the copper sulfate so                          | plution into a polystyrene cup.       |                                    |
|                                                         | 2. Record the starting temperature of the co                                    | opper sulfate solution.               |                                    |
|                                                         | 3. Add the metal and stir the solution.                                         |                                       |                                    |
| 4. Record the highest temperature the mixture reaches.  |                                                                                 |                                       |                                    |
| 5. Calculate the temperature increase for the reaction. |                                                                                 |                                       |                                    |
|                                                         | 6. Repeat steps 1-5 with different metals.                                      |                                       |                                    |
|                                                         |                                                                                 |                                       |                                    |
| 06.1                                                    | Draw <b>one</b> line from each type of variable to                              | the name of the variable in           |                                    |
|                                                         | the investigation.                                                              | [2 marks]                             |                                    |
|                                                         | Type of variable                                                                | Name of variable in the investigation |                                    |
|                                                         |                                                                                 | Concentration of solution             |                                    |
|                                                         | Dependent variable                                                              | Particle size of solid                |                                    |
|                                                         |                                                                                 | Temperature change                    |                                    |
|                                                         | Independent variable                                                            |                                       |                                    |
|                                                         |                                                                                 | Type of metal                         |                                    |
|                                                         |                                                                                 | Volume of solution                    |                                    |
|                                                         |                                                                                 |                                       |                                    |
|                                                         |                                                                                 |                                       |                                    |
|                                                         |                                                                                 |                                       |                                    |
|                                                         |                                                                                 |                                       |                                    |

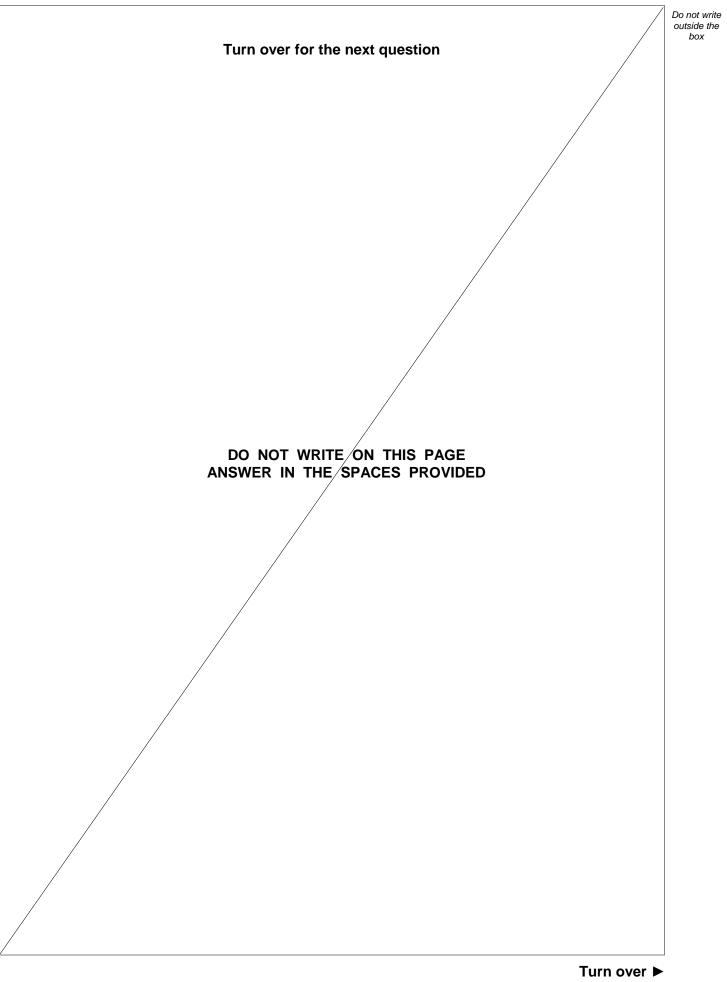


|      |                                                                                                                         | 1                                  |
|------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| 06.2 | The student used a polystyrene cup and <b>not</b> a glass beaker.<br>Why did this make the investigation more accurate? | Do not write<br>outside the<br>box |
|      | [1 mark]                                                                                                                |                                    |
|      | Tick <b>one</b> box.                                                                                                    |                                    |
|      | Glass is breakable                                                                                                      |                                    |
|      | Glass is transparent                                                                                                    |                                    |
|      | Polystyrene is a better insulator                                                                                       |                                    |
|      | Polystyrene is less dense                                                                                               |                                    |
|      | Question 6 continues on the next page                                                                                   |                                    |
|      |                                                                                                                         |                                    |
|      |                                                                                                                         |                                    |
|      |                                                                                                                         |                                    |
|      |                                                                                                                         |                                    |
|      |                                                                                                                         |                                    |
|      |                                                                                                                         |                                    |
|      |                                                                                                                         |                                    |
|      |                                                                                                                         |                                    |
|      |                                                                                                                         |                                    |
|      |                                                                                                                         |                                    |
|      |                                                                                                                         |                                    |
|      |                                                                                                                         |                                    |
|      |                                                                                                                         |                                    |
|      |                                                                                                                         |                                    |
|      |                                                                                                                         |                                    |
|      |                                                                                                                         |                                    |
|      |                                                                                                                         |                                    |
|      |                                                                                                                         |                                    |
|      |                                                                                                                         |                                    |




24






| 06.4 | The student concluded that the reactions between the metals and copper sulfate solution are endothermic. | Do not write<br>outside the<br>box |
|------|----------------------------------------------------------------------------------------------------------|------------------------------------|
|      | Give <b>one</b> reason why this conclusion is <b>not</b> correct. [1 mark]                               |                                    |
|      |                                                                                                          |                                    |
| 06.5 | The temperature increase depends on the reactivity of the metal.                                         |                                    |
|      | Write the metals magnesium, nickel and zinc in order of reactivity.                                      |                                    |
|      | Use Table 5.<br>[1 mark]                                                                                 |                                    |
|      | Most reactive                                                                                            |                                    |
|      | Least reactive                                                                                           |                                    |
| 06.6 | <b>Y</b> is an unknown metal.                                                                            |                                    |
|      | Describe a method to find the position of Y in the reactivity series in Question 06.5 [3 marks]          |                                    |
|      |                                                                                                          |                                    |
|      |                                                                                                          |                                    |
|      |                                                                                                          |                                    |
|      |                                                                                                          |                                    |
|      |                                                                                                          |                                    |
|      |                                                                                                          |                                    |
|      |                                                                                                          |                                    |











| 0 7   | This question is about elements in Group 1.                                                                                                                                                             | Do not write<br>outside the<br>box |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
|       | A teacher burns sodium in oxygen.                                                                                                                                                                       |                                    |
| 0 7.1 | Complete the word equation for the reaction. [1 mark]                                                                                                                                                   |                                    |
|       | sodium + oxygen $\rightarrow$                                                                                                                                                                           |                                    |
| 07.2  | What is the name of this type of reaction? [1 mark]<br>Tick <b>one</b> box.                                                                                                                             |                                    |
|       | Decomposition                                                                                                                                                                                           |                                    |
|       | Electrolysis                                                                                                                                                                                            |                                    |
|       | Oxidation                                                                                                                                                                                               |                                    |
|       | Precipitation                                                                                                                                                                                           |                                    |
| 07.3  | The teacher dissolves the product of the reaction in water and adds universal indicator.<br>The universal indicator turns purple.<br>What is the pH value of the solution?<br>Tick one box.<br>1 4 7 13 |                                    |



| 0 7.4 | The solution contains a substance with the formula NaOH                  | Do not write<br>outside the<br>box |
|-------|--------------------------------------------------------------------------|------------------------------------|
|       | Give the name of the substance. [1 mark]                                 |                                    |
|       |                                                                          |                                    |
|       |                                                                          |                                    |
| 0 7.5 | All alkalis contain the same ion.                                        |                                    |
|       | What is the formula of this ion? [1 mark]                                |                                    |
|       | Tick <b>one</b> box.                                                     |                                    |
|       | H <sup>+</sup>                                                           |                                    |
|       | Na <sup>+</sup>                                                          |                                    |
|       | OH⁻                                                                      |                                    |
|       | O <sup>2-</sup>                                                          |                                    |
|       |                                                                          |                                    |
| 07.6  | A solution of NaOH had a concentration of 40 g/dm <sup>3</sup>           |                                    |
|       | What mass of NaOH would there be in 250 cm <sup>3</sup> of the solution? |                                    |
|       | [2 marks]                                                                |                                    |
|       |                                                                          |                                    |
|       |                                                                          |                                    |
|       |                                                                          |                                    |
|       | Mass = g                                                                 |                                    |
|       |                                                                          |                                    |
|       |                                                                          |                                    |



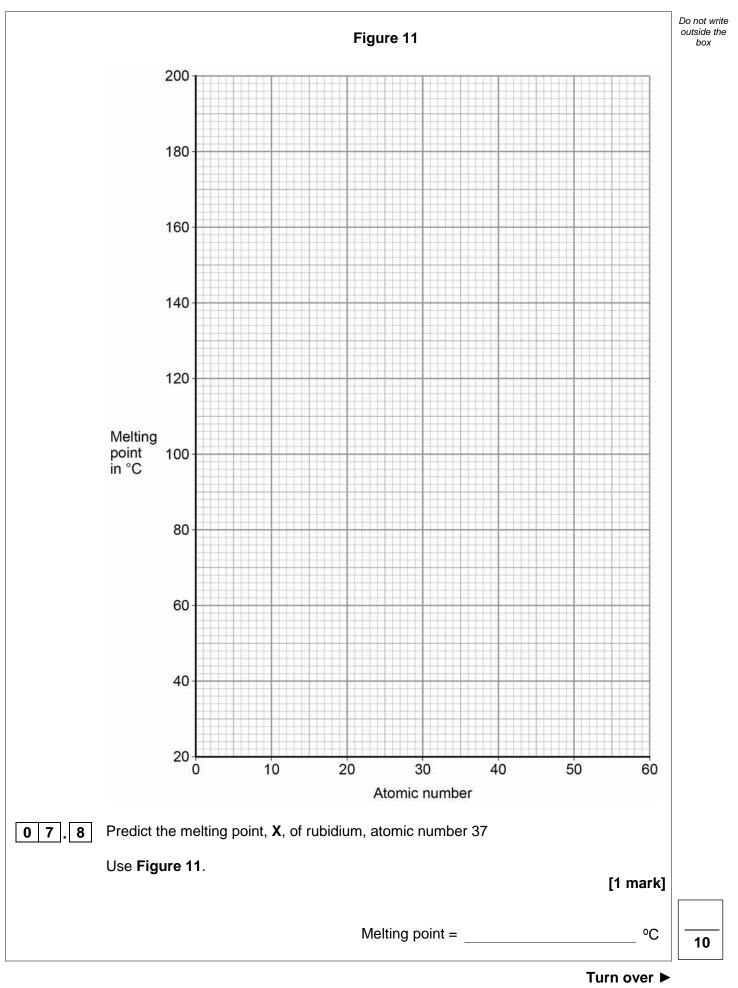
Do not write outside the

box

# 0 7.7

The melting points of the elements in Group 1 show a trend.

 Table 6 shows the atomic numbers and melting points of the Group 1 elements.


#### Table 6

| Element   | Atomic number | Melting point in °C |
|-----------|---------------|---------------------|
| Lithium   | 3             | 181                 |
| Sodium    | 11            | 98                  |
| Potassium | 19            | 63                  |
| Rubidium  | 37            | X                   |
| Caesium   | 55            | 29                  |

Plot the data from **Table 6** on **Figure 11**.

[2 marks]







|       |                                                                                                         | 1                                  |
|-------|---------------------------------------------------------------------------------------------------------|------------------------------------|
| 08    | Soluble salts are formed by reacting metal oxides with acids.                                           | Do not write<br>outside the<br>box |
| 0 8.1 | Give <b>one</b> other type of substance that can react with an acid to form a soluble salt.<br>[1 mark] |                                    |
|       |                                                                                                         |                                    |
|       |                                                                                                         |                                    |
|       | $\sim$                                                                                                  |                                    |
| 0 8 2 | Calcium nitrate contains the ions $Ca^{2+}$ and $NO_3^{-}$<br>Give the formula of calcium nitrate.      |                                    |
|       | Give the formula of calcium hitrate. [1 mark]                                                           |                                    |
|       |                                                                                                         |                                    |
|       |                                                                                                         |                                    |
| 08.3  | Describe a method to make pure, dry crystals of magnesium sulfate from a metal                          |                                    |
|       | oxide and a dilute acid. [6 marks]                                                                      |                                    |
|       |                                                                                                         |                                    |
|       |                                                                                                         |                                    |
|       |                                                                                                         |                                    |
|       |                                                                                                         |                                    |
|       |                                                                                                         |                                    |
|       |                                                                                                         |                                    |
|       |                                                                                                         |                                    |
|       |                                                                                                         |                                    |
|       |                                                                                                         |                                    |
|       |                                                                                                         |                                    |
|       |                                                                                                         |                                    |
|       |                                                                                                         |                                    |
|       |                                                                                                         |                                    |
|       |                                                                                                         |                                    |



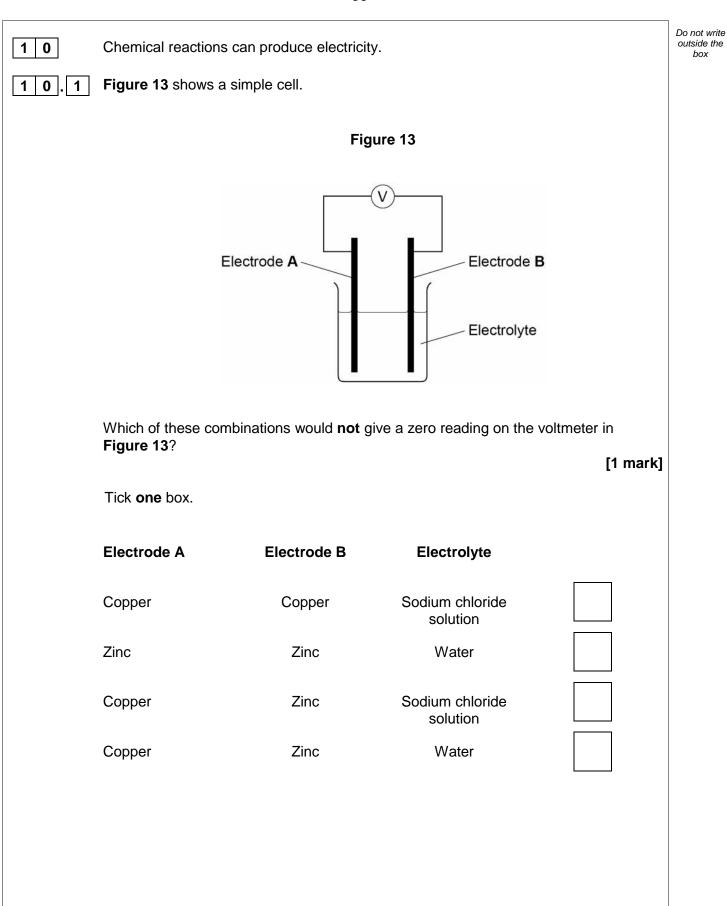
| 22 |   |              |
|----|---|--------------|
|    |   | $\mathbf{r}$ |
| 00 | ັ | J            |

Do not write outside the box

8

# Turn over for the next question




34

| 09   | This question is about metals and metal compounds.                                                                                         | Do not write<br>outside the<br>box |
|------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| 09.1 | Iron pyrites is an ionic compound.                                                                                                         |                                    |
|      | Figure 12 shows a structure for iron pyrites.                                                                                              |                                    |
|      | Figure 12                                                                                                                                  |                                    |
|      | Key<br>Fe<br>S                                                                                                                             |                                    |
|      | Determine the formula of iron pyrites.                                                                                                     |                                    |
|      | Use Figure 12. [1 mark]                                                                                                                    |                                    |
|      |                                                                                                                                            |                                    |
| 09.2 | An atom of iron is represented as $^{56}_{26}$ Fe<br>Give the number of protons, neutrons and electrons in this atom of iron.<br>[3 marks] |                                    |
|      | Number of protons                                                                                                                          |                                    |
|      | Number of neutrons                                                                                                                         |                                    |
|      | Number of electrons                                                                                                                        |                                    |
| 09.3 | Iron is a transition metal.                                                                                                                |                                    |
|      | Sodium is a Group 1 metal.                                                                                                                 |                                    |
|      | Give <b>two</b> differences between the properties of iron and sodium.<br>[2 marks]                                                        |                                    |
|      | 1                                                                                                                                          |                                    |
|      | 2                                                                                                                                          |                                    |
|      |                                                                                                                                            |                                    |



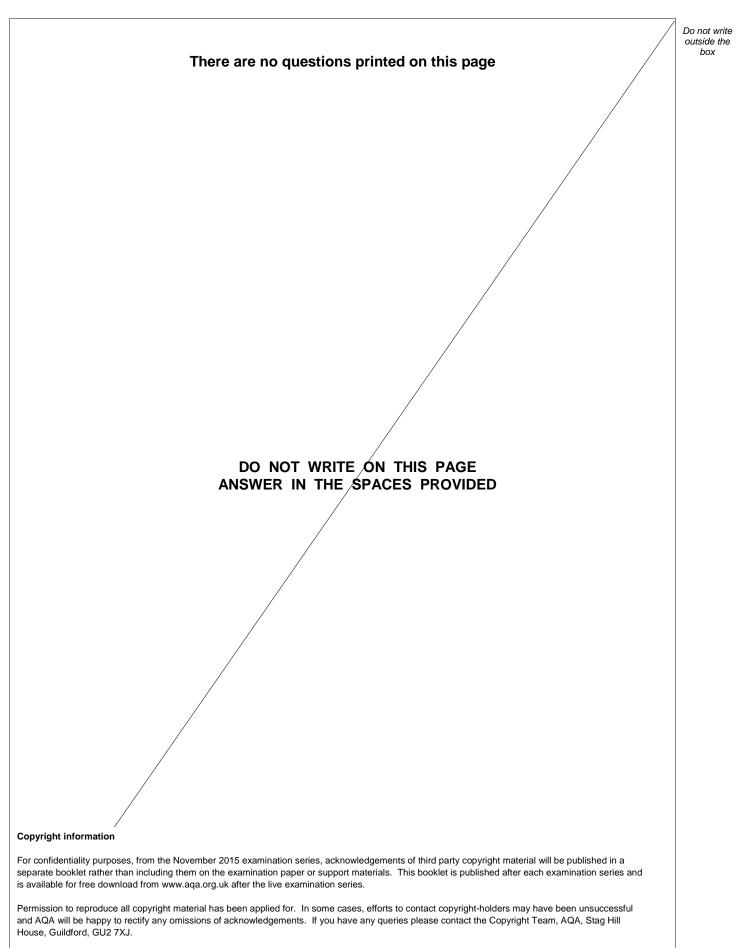
|       | Nickel is extracted from nickel oxide by reduction with carbon.           |            | Do not write<br>outside the<br>box |
|-------|---------------------------------------------------------------------------|------------|------------------------------------|
| 09.4  | Explain why carbon can be used to extract nickel from nickel oxide.       |            | box                                |
| 0 3.4 |                                                                           | [2 marks]  |                                    |
|       |                                                                           |            |                                    |
|       |                                                                           |            |                                    |
|       |                                                                           |            |                                    |
|       |                                                                           |            |                                    |
|       |                                                                           |            |                                    |
|       |                                                                           |            |                                    |
| 09.5  | An equation for the reaction is:                                          |            |                                    |
|       | $NiO + C \rightarrow Ni + CO$                                             |            |                                    |
|       | Calculate the percentage atom economy for the reaction to produce nickel. |            |                                    |
|       | Relative atomic masses ( $A_r$ ): C = 12 Ni = 59                          |            |                                    |
|       | Relative formula mass ( $M_r$ ): NiO = 75                                 |            |                                    |
|       | Give your answer to 3 significant figures.                                |            |                                    |
|       |                                                                           | [3 marks]  |                                    |
|       |                                                                           |            |                                    |
|       |                                                                           |            |                                    |
|       |                                                                           |            |                                    |
|       |                                                                           |            |                                    |
|       |                                                                           |            |                                    |
|       |                                                                           |            |                                    |
|       | Percentage atom economy =                                                 | %          |                                    |
|       |                                                                           |            |                                    |
|       |                                                                           |            | 11                                 |
|       |                                                                           |            |                                    |
|       |                                                                           |            |                                    |
|       |                                                                           |            |                                    |
|       |                                                                           |            |                                    |
|       | Т                                                                         | urn over ► |                                    |







|      | Alkaline batteries are non-rechargeable.                     | Do not write<br>outside the<br>box |
|------|--------------------------------------------------------------|------------------------------------|
| 10.2 | Why do alkaline batteries eventually stop working? [1 mark]  |                                    |
|      |                                                              |                                    |
| 10.3 | Why can alkaline batteries <b>not</b> be recharged? [1 mark] |                                    |
|      |                                                              |                                    |
|      | Question 10 continues on the next page                       |                                    |
|      |                                                              |                                    |
|      |                                                              |                                    |
|      |                                                              |                                    |
|      |                                                              |                                    |
|      |                                                              |                                    |
|      | Turn over ►                                                  |                                    |




box

Do not write outside the Hydrogen fuel cells and rechargeable lithium-ion batteries can be used to power electric cars. Complete the balanced equation for the overall reaction in a hydrogen fuel cell. 1 0 4 [2 marks] H<sub>2</sub> +  $H_2O$  $\rightarrow$ 1 0. 5 Table 7 shows data about different ways to power electric cars. Table 7 Rechargeable Hydrogen fuel cell lithium-ion battery Time taken to refuel or 5 30 recharge in minutes Distance travelled before Up to 240 Up to 415 refuelling or recharging in miles Distance travelled per unit of 22 66 energy in km Cost of refuelling or recharging 50 3 in £ Minimum cost of car in £ 60 000 18 000 Evaluate the use of hydrogen fuel cells compared with rechargeable lithium-ion batteries to power electric cars. Use Table 7 and your own knowledge. [6 marks]

|                  | Do not write<br>outside the<br>box |
|------------------|------------------------------------|
|                  | DOX                                |
|                  |                                    |
|                  |                                    |
|                  |                                    |
|                  |                                    |
|                  |                                    |
|                  |                                    |
|                  |                                    |
|                  |                                    |
|                  |                                    |
|                  |                                    |
|                  |                                    |
|                  |                                    |
|                  |                                    |
|                  |                                    |
|                  |                                    |
|                  |                                    |
|                  |                                    |
|                  |                                    |
|                  |                                    |
|                  |                                    |
|                  |                                    |
|                  |                                    |
| END OF QUESTIONS | 11                                 |
|                  |                                    |
|                  |                                    |
|                  |                                    |
|                  |                                    |
|                  |                                    |
|                  |                                    |
|                  |                                    |
|                  |                                    |
|                  |                                    |
|                  |                                    |
|                  |                                    |
|                  |                                    |
|                  |                                    |
|                  |                                    |
|                  |                                    |
|                  |                                    |





Copyright © 2018 AQA and its licensors. All rights reserved.

