

Please write clearly in	block capitals.		
Centre number		Candidate number	
Surname			
Forename(s)			
Candidate signature			
GCSE			
CHEMISTR	χΥ		Н

Morning

Higher Tier Paper 2

Wednesday 13 June 2018

Materials

For this paper you must have:

- a ruler
- a scientific calculator
- the periodic table (enclosed).

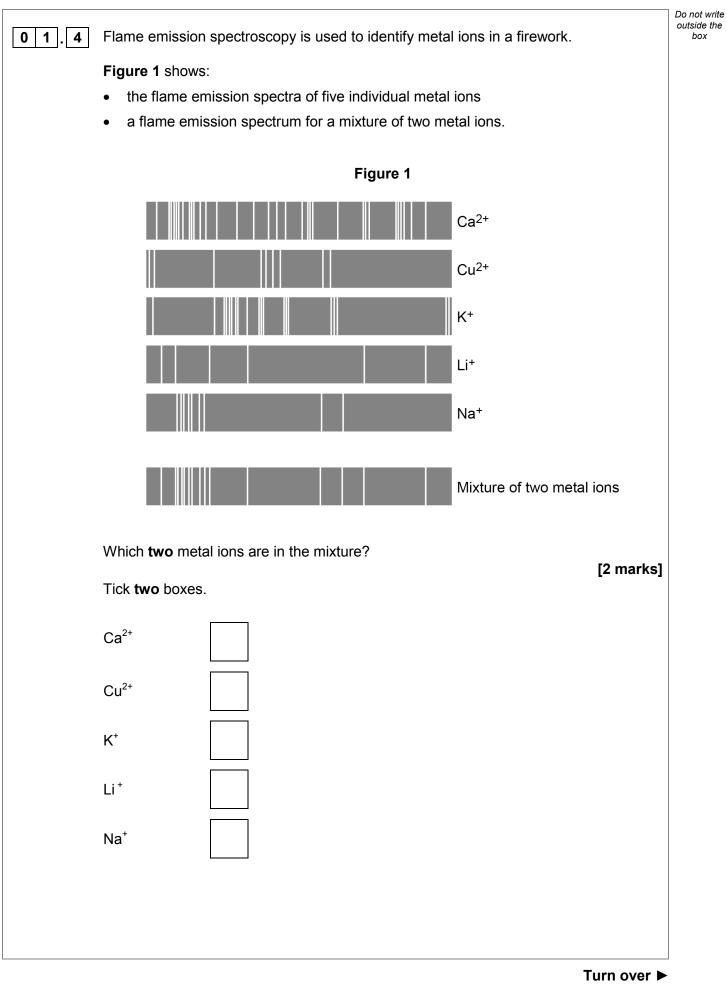
Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- There are 100 marks available on this paper.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
TOTAL	

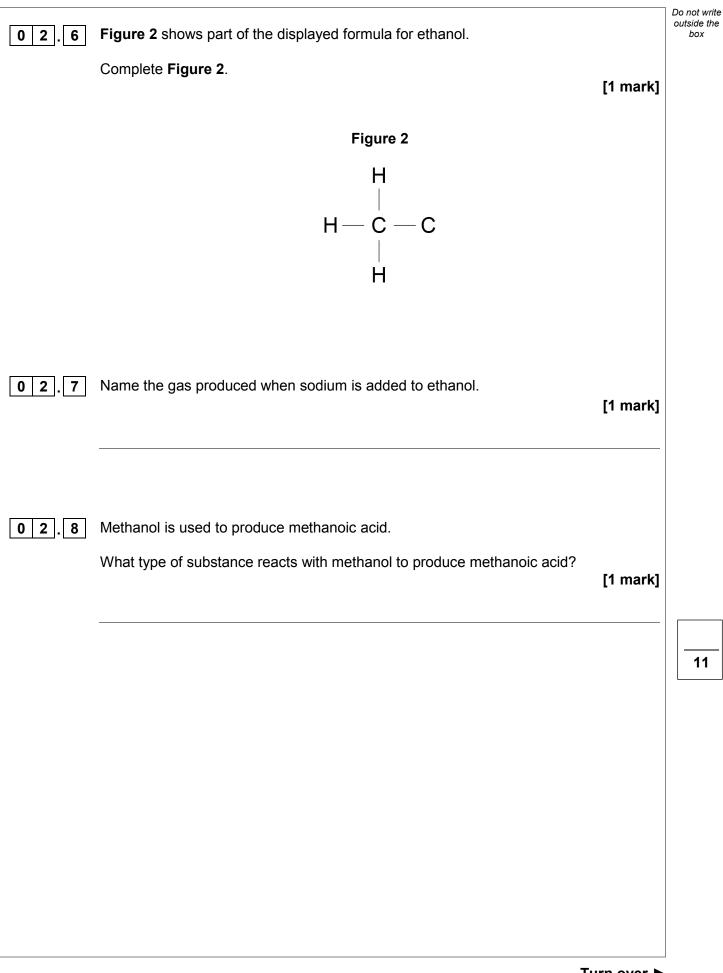

Time allowed: 1 hour 45 mins

0 1	This question is about chemicals in fireworks. Coloured flames are produced because of the metal ions present in fireworks.	Do not write outside the box
01.1	What colour flame would sodium ions produce? [1 mark]	
01.2	Name a metal ion that would produce a green flame. [1 mark]	
0 1.3	Some fireworks contain a mixture of metal ions. Why is it difficult to identify the metal ions from the colour of the flame? [1 mark]	

	The compounds in fireworks also contain non-metal ions.	Do not write outside the box
	A scientist tests a solution of the chemicals used in a firework.	
0 1.5	Silver nitrate solution and dilute nitric acid are added to the solution. A cream precipitate forms. Which ion is shown to be present by the cream precipitate? [1 mark]	
0 1.6	Describe a test to show the presence of sulfate ions in the solution.	
	Give the result of the test if there are sulfate ions in the solution. [3 marks]	
	Test	
	Result	
		9

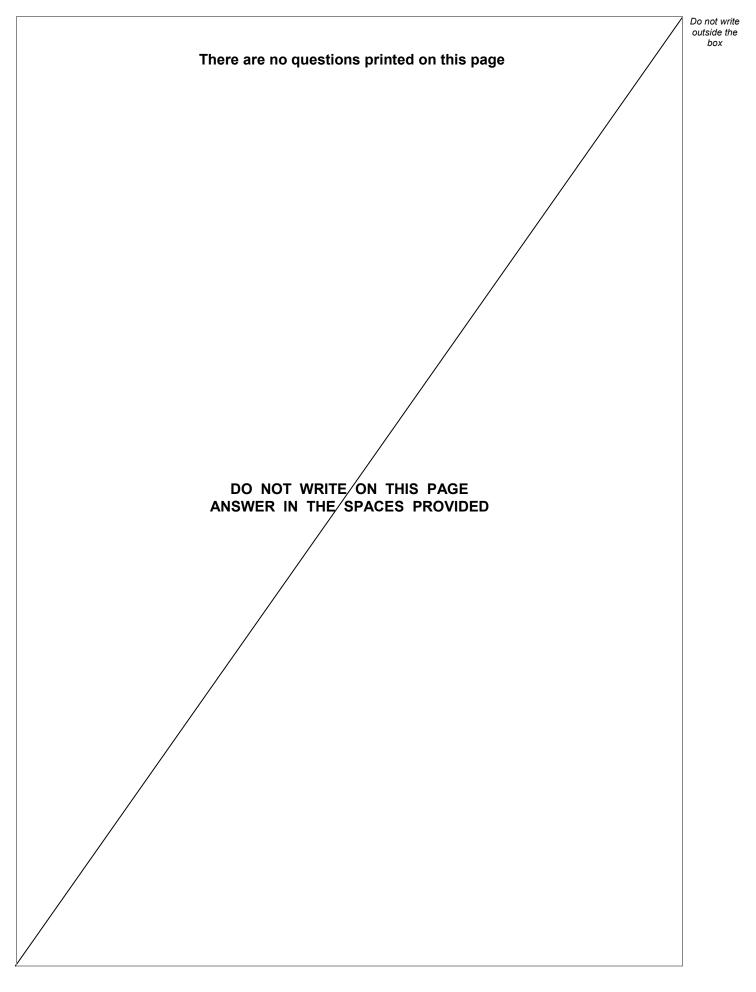
box

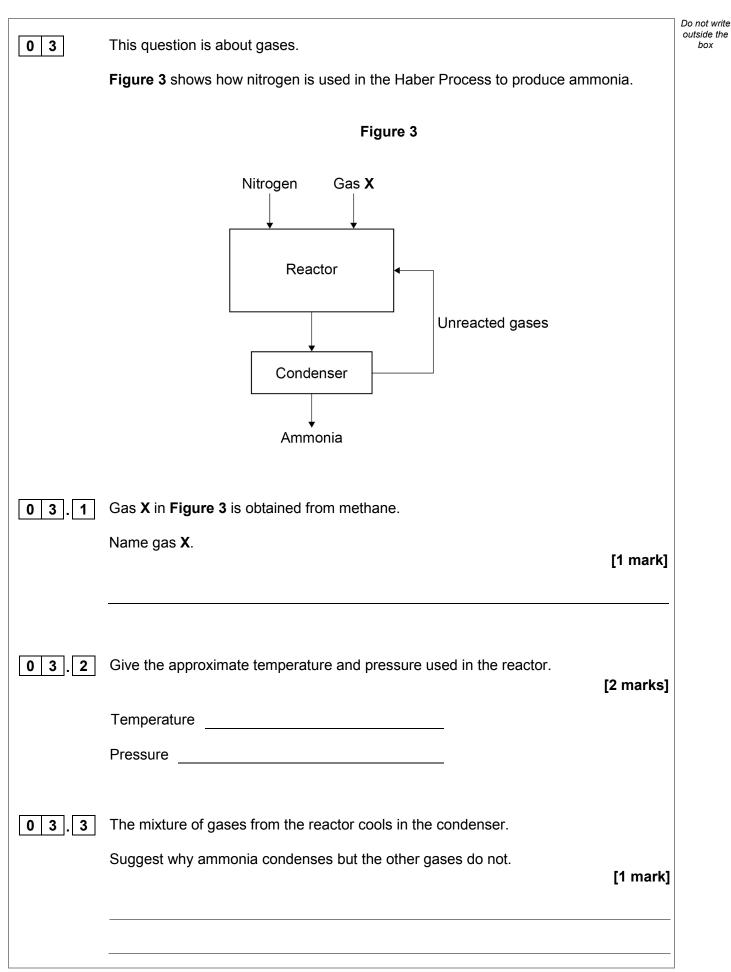
Do not write outside the 0 2 Methylated spirit is a useful product made from a mixture of substances. Table 1 shows the mass of the substances in a sample of methylated spirit. Table 1 **Substance** Mass in grams Ethanol 265.5 23.3 Methanol Pyridine 3.0 Methyl violet 1.5 What name is given to a useful product such as methylated spirit? 0 2 1 [1 mark] Calculate the percentage by mass of methanol in methylated spirit. 0 2 . 2 Use Table 1. [2 marks] Percentage = % Question 2 continues on the next page



IB/G/Jun18/8462/2H

1	6	3	
1	Ļ	,	


	Methylated spirit contains ethanol and is available cheaply.	
	Methylated spirit also contains:	
	 pyridine which has a very unpleasant smell 	
	methyl violet which makes the mixture purple.	
2.3	Suggest why pyridine and methyl violet are added to ethanol to make methylated spirit.	[1 mark]
2.4	Suggest one use of methylated spirit.	[1 mark]
2.5	Describe how ethanol is produced from sugar solution. Give the name of this process.	[3 marks]
		[0]



Turn over ►

Turn over ►

Do not write outside the

box

The Earth's early atmosphere was different to Earth's atmosphere today.

Scientists think that the Earth's early atmosphere was like the atmosphere found on Venus today.

Table 2 shows the amounts of carbon dioxide and oxygen in the atmospheres of Venus and Earth today.

Table 2

Gas	Percentage (%) in Venus' atmosphere today	Percentage (%) in Earth's atmosphere today
Carbon dioxide	96.50	0.04
Oxygen	0.00	20.95

0 3. **4** The percentages of carbon dioxide and oxygen have changed from Earth's early atmosphere to Earth's atmosphere today.

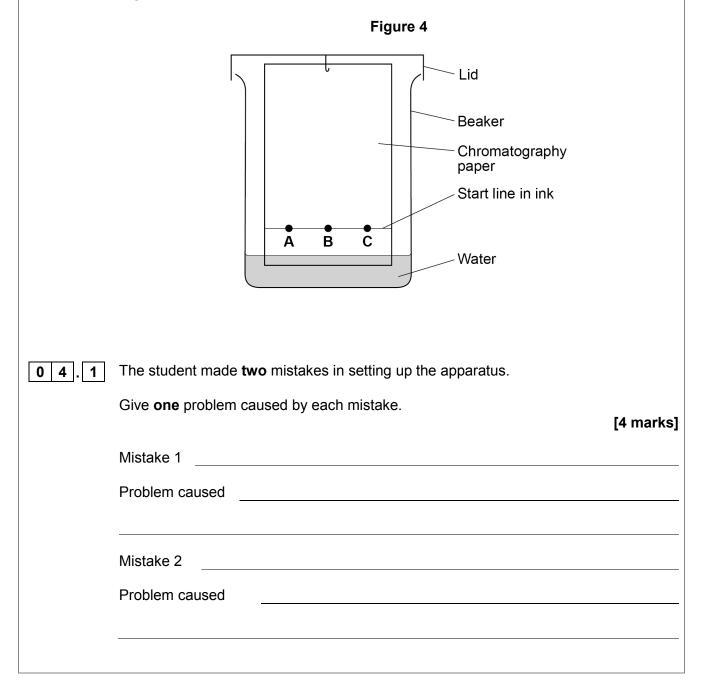
Explain the processes that led to these changes.

[6 marks]

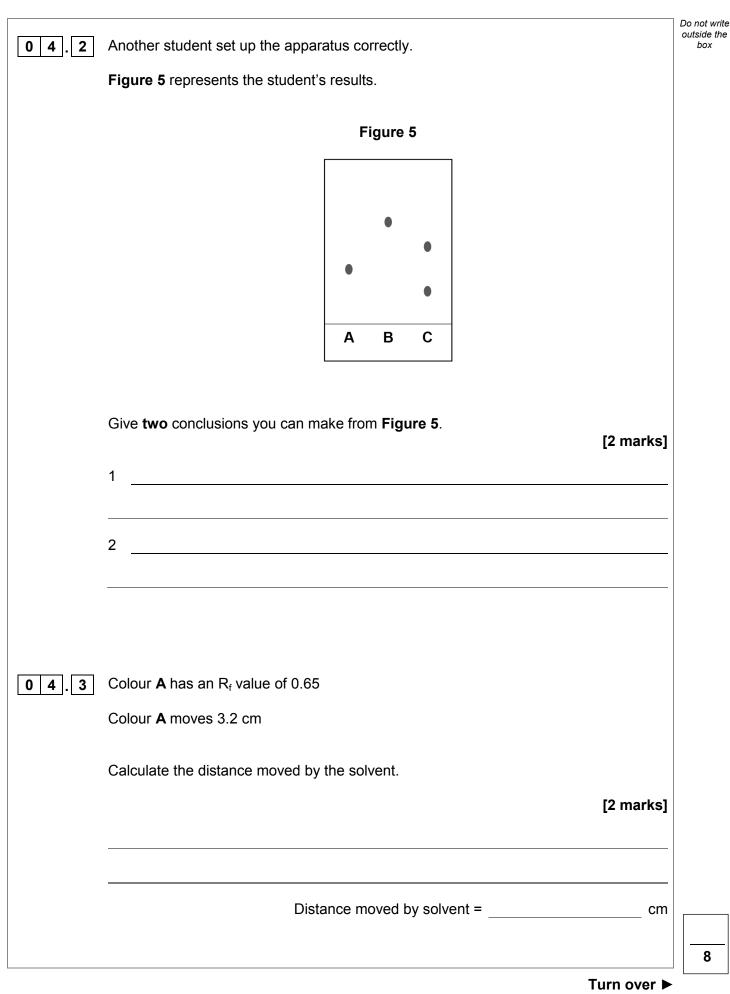
0 3.5	Why are scientists not certain about the percentage of each gas in the Earth's	Do not write outside the box
	early atmosphere? [1 mark]	
	Turn over for the next question	11
	Turn over ►	

Do not write outside the

box


0 4	A student investigated the colours in three different flowers, A , B and C .
-----	---

The colours are soluble in ethanol but are insoluble in water.


This is the method used.

- 1. Crush flower A.
- 2. Add ethanol to flower A.
- 3. Filter the mixture.
- 4. Put spots of the coloured filtrate on to the chromatography paper.
- 5. Repeat steps 1-4 with flowers **B** and **C**.

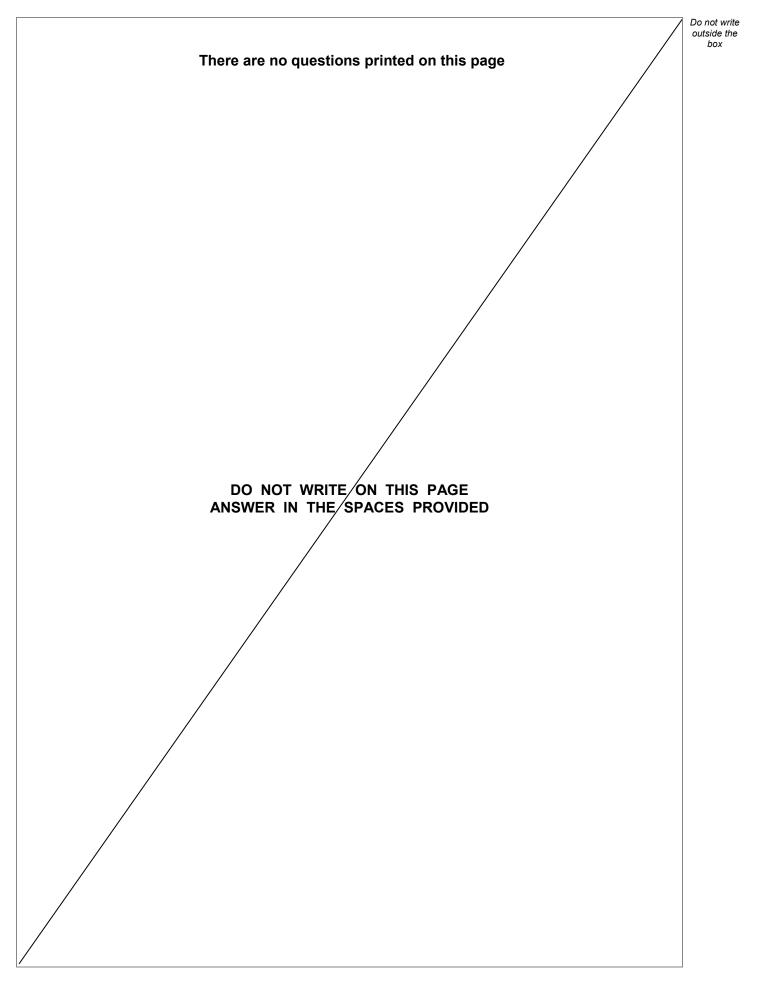
Figure 4 shows the apparatus used.

0 5	Sodium thiosulfate solution reacts with dilute hydrochloric acid.	Do not write outside the box
	The solution becomes cloudy as the reaction takes place.	
0 5 . 1	The equation for the reaction is: $Na_2S_2O_3(aq) + 2 HCI(aq) \rightarrow 2 NaCI(aq) + SO_2(g) + H_2O(I) + S(s)$	
	Explain why the solution becomes cloudy. [2 marks]	
0 5.2	Plan an investigation to show how the concentration of the sodium thiosulfate solution affects the rate of the reaction with dilute hydrochloric acid.	
	Your plan should give valid results. [6 marks]	

IB/G/Jun18/8462/2H

1	6

0 6	This question is about polymers.	Do not wi outside ti box
06.1	Polyesters are produced when monomers join together and lose a small molecule.	
	Name the small molecule lost. [1 mark]	
0 6.2	Poly(propene) is produced from propene. Complete the structure of poly(propene) in the equation. [3 marks]	
	$n \begin{array}{c} CH_{3} H \\ \\ C = C \\ \\ H \end{array} + C C + C C + C C + C C + C C + C C + C C + C C + C C + C C + C C + C C + C C + C C + C C + C C + C C + + C + + C + + C + + C + + + C + + + + + + + + + + + + + + + + + + +$	
06.3	Carpets are made from: • poly(propene) • wool • a mixture of poly(propene) and wool.	
	Poly(propene) wears out more slowly than wool.	
	A mixture of poly(propene) and wool to make carpets is more sustainable than using just poly(propene) or just wool.	
	Suggest why. [2 marks]	



17

Density in g/cm ³ 0.90 1.38 Melting point in °C 165 260		Table 3	
Density in g/cm³0.901.38Melting point in °C165260Flame resistancePoorGoodWater absorptionLowHighValuate the suitability of poly(propene) and polyester for firefighter uniforms.		Polyme	fibres
Melting point in °C 165 260 Flame resistance Poor Good Water absorption Low High valuate the suitability of poly(propene) and polyester for firefighter uniforms.	Property	Poly(propene)	Polyester
Flame resistance Poor Good Water absorption Low High valuate the suitability of poly(propene) and polyester for firefighter uniforms.	Density in g/cm ³	0.90	1.38
Nater absorption Low High valuate the suitability of poly(propene) and polyester for firefighter uniforms.	Melting point in °C	165	260
valuate the suitability of poly(propene) and polyester for firefighter uniforms.	Flame resistance	Poor	Good
			r firefighter uniforms.

Turn over ►

Do not write outside the

box

Older cars are tested each year to measure the amount of pollutants contained in exhaust fumes.

Table 4 shows the maximum allowed percentages of exhaust pollutants for petrol cars.

Table 4	4
---------	---

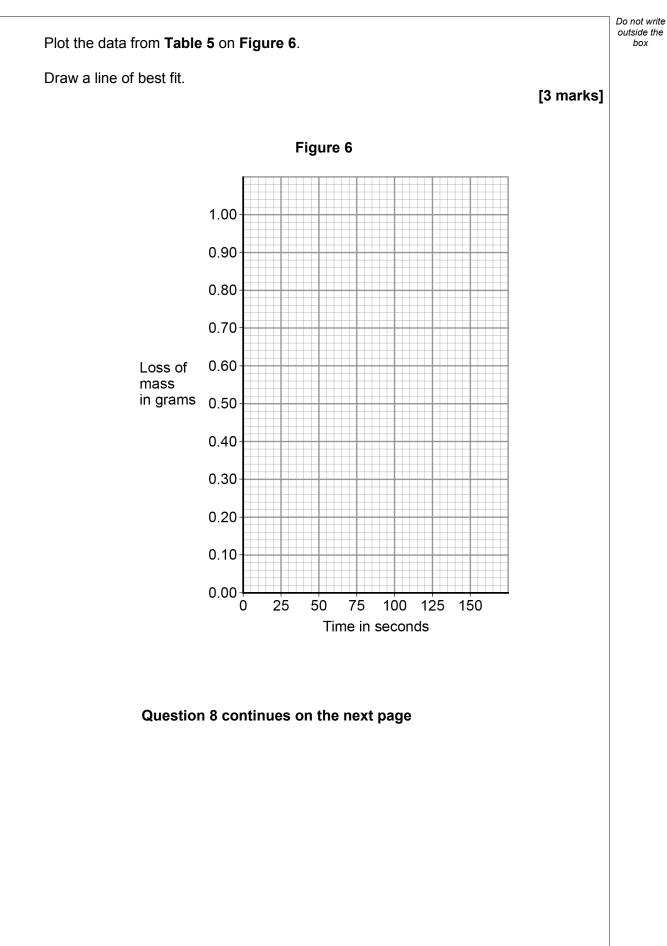
Age of car		d percentage (%) of t pollutant
in years	Carbon Unburned monoxide hydrocarbon	
16–24	0.30	0.02
3–16	0.20	0.02

0 7 . 1	Explain how carbon monoxide is produced when petrol is burned in car engines.
	[2 marks

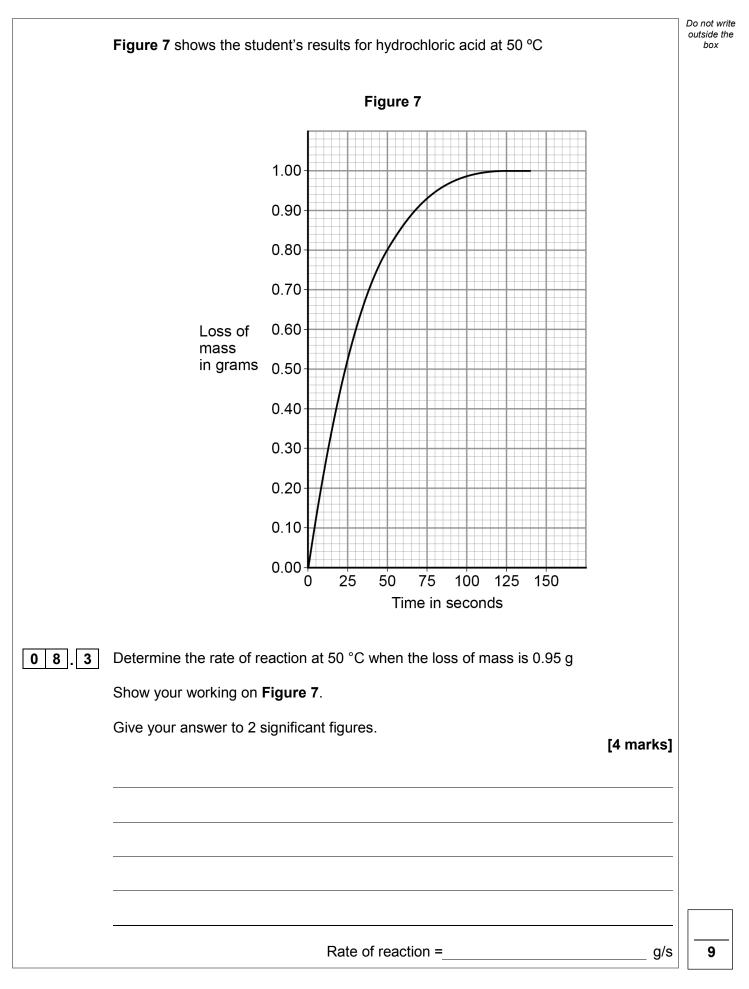
	[2 marks]
0 7.2	Suggest two reasons why the maximum allowed percentage of carbon monoxide has been decreased for newer cars.
	[2 marks]
	1
	2

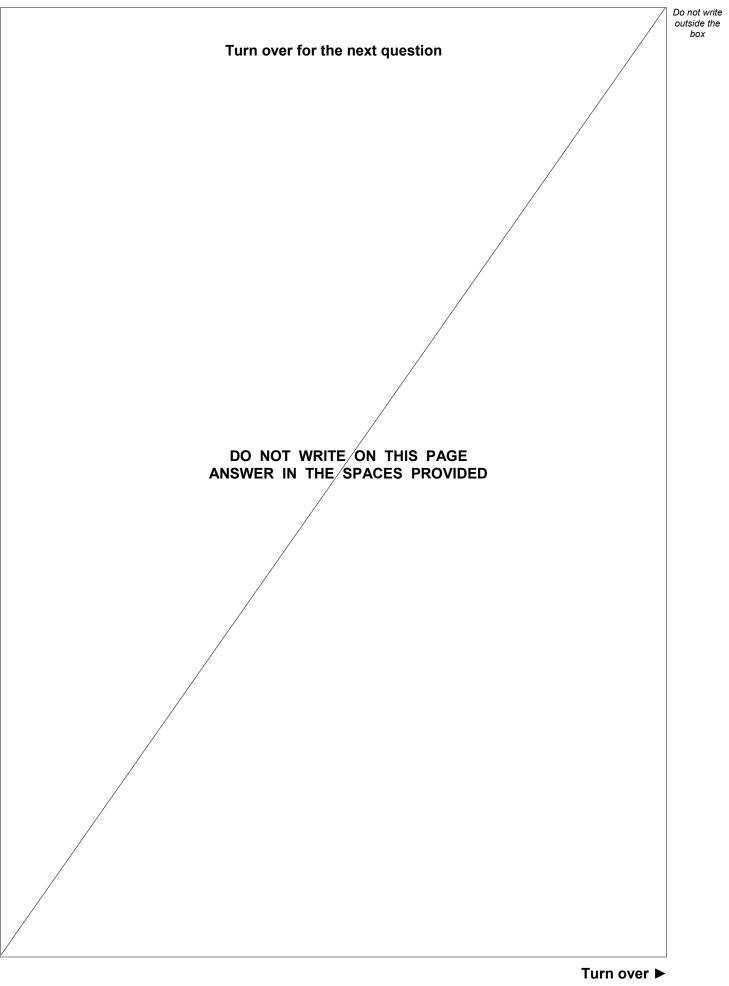
Turn over ►

07.3	Give one reason for having a maximum allowed percentage of unburned hydrocarbons in exhaust fumes.	Do not write outside the box
	[1 mark]	
	Oxides of nitrogen are also pollutants contained in exhaust fumes.	
0 7.4	Describe how oxides of nitrogen are produced when petrol is burned in car engines. [2 marks]	
	Catalytic converters are fitted to car exhausts to reduce the amount of pollutants released into the atmosphere.	
0 7.5	Nitrogen dioxide is an oxide of nitrogen.	
	Nitrogen dioxide reacts to produce nitrogen and oxygen in catalytic converters.	
	Complete the equation for this reaction.	
	The equation should be balanced.	
	[2 marks]	
	$_$ NO ₂ (g) \rightarrow $_$ + $_$ O ₂ (g)	

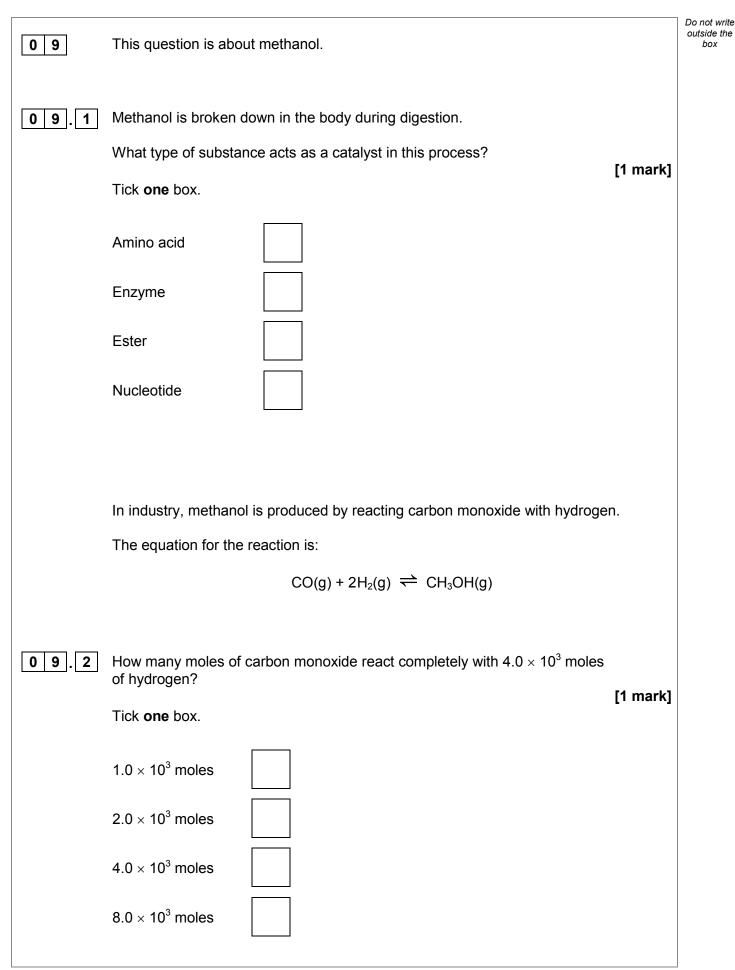

07.6	Give two effects of atmospheric pollution which are reduced by using catalytic converters. [2 marks]	Do not write outside the box
	1	
	2	
0 7.7	The catalyst in catalytic converters is a mixture of three elements.	
	Where in the periodic table are these elements most likely to be found? [1 mark]	
	Tick one box.	
	Alkali metals	
	Halogens	
	Noble gases	
	Transition metals	
		12
	Τ	-

Turn over 🕨

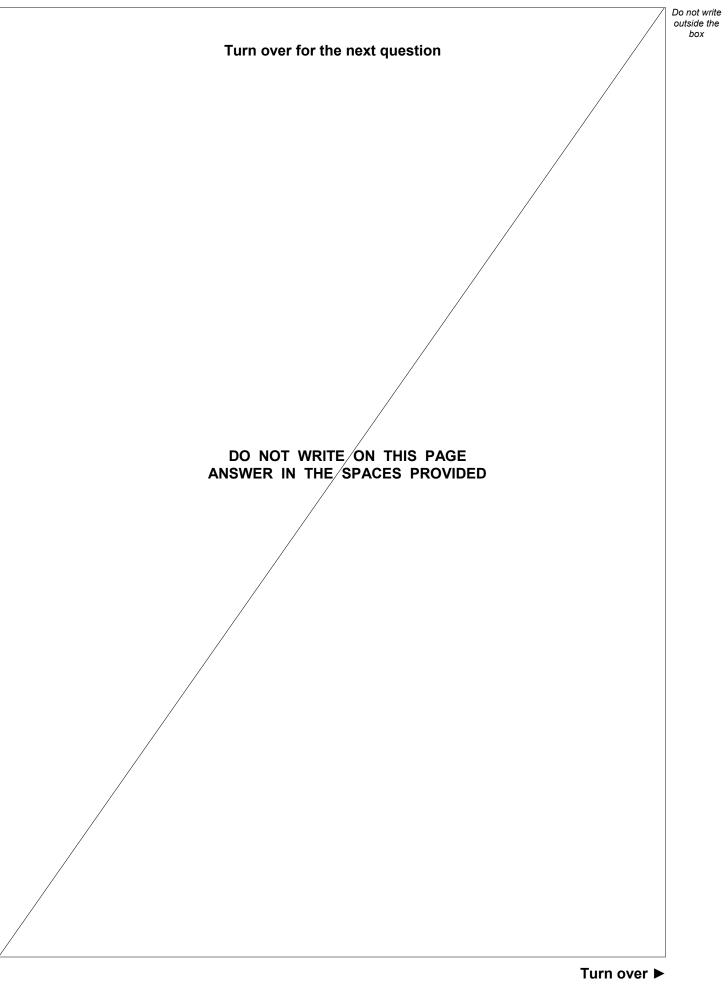

08	A student investigated how temperature affects the rate of reaction betweer magnesium carbonate and dilute hydrochloric acid.	Do no outsic לשלים
	This is the method used.	
	1. Heat hydrochloric acid to 30 °C in a conical flask.	
	2. Add magnesium carbonate powder to the conical flask.	
	 Measure the loss in mass of the flask and contents every 20 seconds fo 140 seconds. 	r
	4. Repeat steps 1-3 with hydrochloric acid heated to 50 °C	
08.1	Explain why the contents of the conical flask lose mass.	[2 marks]
0 8.2	Table 5 shows the student's results for hydrochloric acid at 30 °C Table 5	
08.2		
0 8.2	Table 5 Time in seconds Loss of mass in grams	
08.2	Table 5Time in secondsLoss of mass in grams00.00	
08.2	Table 5Time in secondsLoss of mass in grams00.00200.26	
0 8.2	Table 5Time in secondsLoss of mass in grams00.00200.26400.48	
0 8.2	Table 5Time in secondsLoss of mass in grams00.00200.26400.48	
08.2	Time in seconds Loss of mass in grams 0 0.00 20 0.26 40 0.48 60 0.67 80 0.82	
08.2	Time in seconds Loss of mass in grams 0 0.00 20 0.26 40 0.48 60 0.67 80 0.82	



Turn over ►



IB/G/Jun18/8462/2H


		Do no
09.3	The reaction is carried out at a temperature of 250 °C and a pressure of 100 atmospheres.	outsi
	The forward reaction is exothermic.	
	Explain what happens to the yield of methanol if a temperature higher than 250 °C is used.	
	[2 marks]	
09.4	A pressure of 100 atmospheres is used instead of atmospheric pressure.	
	The higher pressure gives a greater yield of methanol and an increased rate of reaction.	
	Explain why.	
	[4 marks]	
	Question 9 continues on the next page	

Turn over ►

09.5	A catalyst is used in the reaction to produce methanol from carbon monoxide and hydrogen. Explain how a catalyst increases the rate of a reaction. [2 m	outsid	ot write de the ox
09.6	Suggest why a catalyst is used in this industrial process. Do not give answers in terms of increasing the rate of reaction. [1 r		
09.7	Suggest the effect of using the catalyst on the equilibrium yield of methanol. [1 r	nark]	
			2

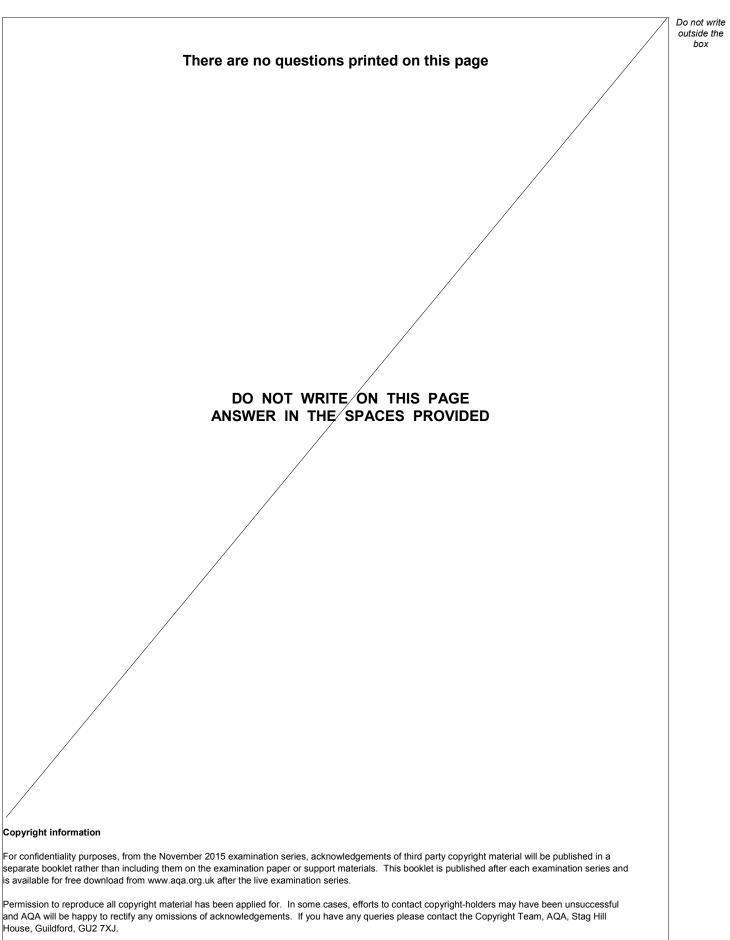

IB/G/Jun18/8462/2H

	Table 6		
	Coated paper	cups Poly(styrene) cup	S
Raw materials	Wood	Crude oil	
Mass of 1 cup in g	8.3	1.9	
Energy to produce 1 cup	in kJ 550	200	
Energy released when 1 is burned in kJ	cup 166	76	
Biodegradable	Yes	No	
Recyclable Evaluate the use of coate disposable cups. Use Table 6 and your known		ing of LCAs.	marks
Evaluate the use of coate disposable cups.	d paper compared with	poly(styrene) to make	marks
Evaluate the use of coate disposable cups.	d paper compared with	poly(styrene) to make	marks
Evaluate the use of coate disposable cups.	d paper compared with	poly(styrene) to make	marks
Evaluate the use of coate disposable cups.	d paper compared with	poly(styrene) to make	marks
Evaluate the use of coate disposable cups.	d paper compared with	poly(styrene) to make	marks
Evaluate the use of coate disposable cups.	d paper compared with	poly(styrene) to make	marks
Evaluate the use of coate disposable cups.	d paper compared with	poly(styrene) to make	marks

		Do not write outside the box
10.2	Calculate the energy needed to produce 1.00 kg of coated paper cups. Use Table 6 .	
	Give your answer in standard form. [2 mark	s]
	Energy =	— kJ
10.3	Melamine is a polymer used to make non-disposable cups.	
	Melamine does not melt when it is heated. Explain why.	s]
	END OF QUESTIONS	

Copyright © 2018 AQA and its licensors. All rights reserved.

