

Please write clearly in	block capitals.		
Centre number		Candidate number	
Surname			<u> </u>
Forename(s)			
Candidate signature			

GCSE COMBINED SCIENCE: SYNERGY

Foundation Tier Paper 4 Physical sciences

Wednesday 13 June 2018 Morning Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a protractor
- · a scientific calculator
- the periodic table (enclosed)
- the Physics Equations Sheet (enclosed).

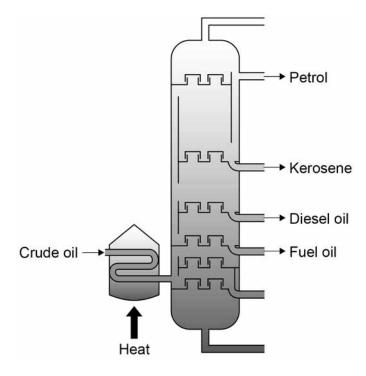
Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

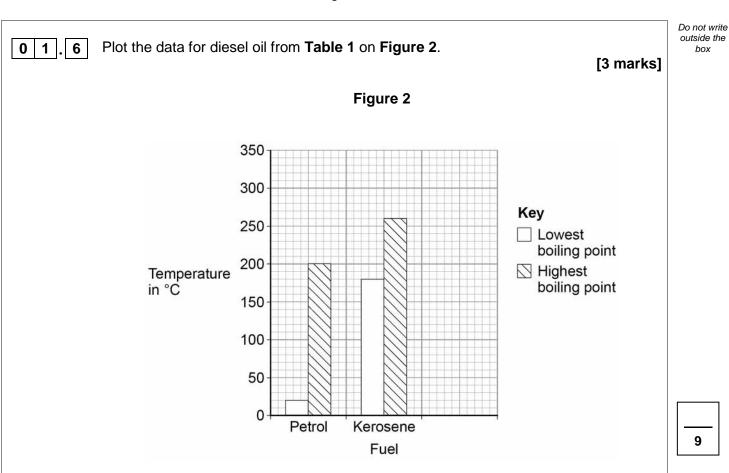
For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
6		
7		
8		
9		
TOTAL		


0 1	Crude oil is a mixture of hydrocarbons.	Do not write outside the box
0 1.1	Name the two elements in a hydrocarbon. [2 marks]	
	1	
	2	
0 1.2	What was crude oil formed from? [1 mark]	
	Tick one box.	
	Acids	
	Enzymes	
	Metals	
	Plankton	

Do not write outside the box

Figure 1 shows how crude oil is separated to produce different fuels.

Figure 1



0 1.3	What is the name of this process?		
Tick one box.			[1 mark]
	Combustion		
	Fractional distillation		
	Phytomining		
	Steam cracking		
Question 1 continues on the next page			

0 1.4 V	Vhy is the crude oil heated?		[1 mark]
- - T	a ble 1 shows some properties o	of the fuels produced by tl	ne process.
	٦	Table 1	
uel	Number of carbon atoms in chain	Lowest boiling point in °C	Highest boiling point in °C
Petrol	5–10	20	200
erosene	10–16	180	260
Diesel oil	14–20	260	340
uel oil	20–70	370	600
Т F к	Which of the fuels has the largest lick one box. Petrol Gerosene Diesel oil	t boiling point range?	[1 mark]

Turn over for the next question

0 2	This question is about Group 1 elements.	Do not write outside the box
	A teacher demonstrated the reaction of Group 1 elements with water.	
	Figure 3 shows the apparatus.	
	Figure 3	
	Lithium	
	Water	
0 2 . 1	What name is given to Group 1 elements? [1 mark]	
	Tick one box.	
	Alkali metals	
	Halogens	
	Noble gases	
	Non-metals	
0 2 . 2	The teacher wore safety glasses and used tongs to handle the elements.	
	Suggest one other safety precaution the teacher should take. [1 mark]	

Table 2 shows the teacher's results.

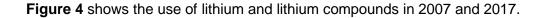
Table 2

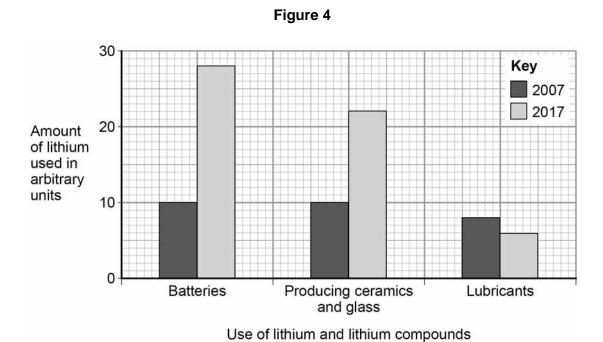
Element	Observations	
Lithium	bubbles formlithium moves slowly on surface	
Sodium	bubbles formsodium moves quickly on surfacesodium melts to form a ball	
Potassium	 bubbles form potassium moves very quickly on surface potassium melts to form a ball a lilac flame is seen 	

0 2 . 3	Describe the trend in reactivity in Group 1.	
	Give two observations from Table 2 which provide evidence for the trend.	[3 marks]

Question 2 continues on the next page

0 2.4	Rubidium is a Group 1 element.	Do not write outside the box
	Rubidium is below potassium in the periodic table.	
	Suggest why the teacher did not demonstrate the reaction between rubidium and water.	
	[1 mark]	
0 2.5	Complete the balanced equation for the reaction between sodium and water. [1 mark]	
	Na + $H_2O \rightarrow$ NaOH + H_2	
0 2.6	What is the name of the compound with the formula NaOH?	
	[1 mark] Tick one box.	
	Sodium dioxide	
	Sodium hydrate	
	Sodium hydroxide	
	Sodium oxide	


Table 3 shows the diameter of atoms of Group 1 elements.


Table 3

Element	Diameter of atom in nanometres	
Lithium	0.304	
Sodium	0.372	
Potassium	х	
Rubidium	0.496	
Caesium	0.530	

0 2.7	Predict value X in Ta	ble 3.		[1 mark]
			X =	nanometres
0 2 . 8	1 nanometre is 10 ⁻⁹ n What is the diameter Tick one box. 3.04 x 10 ⁻⁸ m 3.04 x 10 ⁻⁹ m 3.04 x 10 ⁻¹⁰ m		metres?	[1 mark]
	3.04 x 10 ⁻¹¹ m			
	Ques	stion 2 continues or	the next page	

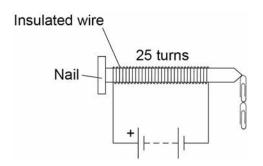
0 2.9 Describe how the use of lithium and lithium compounds changed between 2007 and 2017.

You must include data from Figure 4 in your answer.	[3 marks]

13

box

Do not write outside the Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED


0 3

A student investigated how the number of turns of wire on an electromagnet affects how many paper clips the electromagnet can pick up.

Do not write outside the

Figure 5 shows the apparatus used.

Figure 5

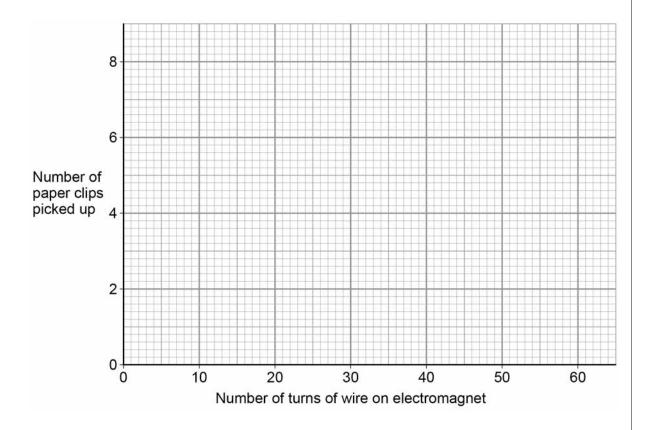
This is the method used.

- 1. Wrap wire around an iron nail.
- 2. Count the number of turns of wire.
- 3. Connect the wire to a battery to make the electromagnet.
- 4. Switch on the electromagnet and place it near the paper clips.
- 5. Count the number of paper clips picked up.
- 6. Repeat steps 1–5 for different numbers of turns of wire.

Table 4 shows the results.

Table 4

Number of turns of wire on electromagnet	Number of paper clips picked up
10	1
25	2
40	4
55	5
60	6



0 3 . 1 Plot the data from Table 4 on Figure 6.

Draw a line of best fit.

[3 marks]

Figure 6

0 3 . 2 Describe the relationship between the number of paper clips picked up and the number of turns on the electromagnet.

[1 mark]

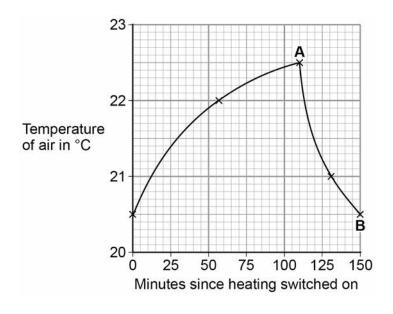
Question 3 continues on the next page

0 3.3	Suggest what would happen if the student used 5 turns of wire in the inves	tigation.	outside the
	Give a reason for your answer.	[2 marks]	
0 3.4	Describe one way the student's investigation could have been improved.		
	Give a reason for the improvement.	[2 marks]	
	Improvement		
	Reason		
0 3.5	Which two factors would affect the strength of the magnetic field around the electromagnet?		
	Tick two boxes.	[2 marks]	
	The colour of the insulation around the wire		
	The direction of the current through the wire		
	The distance from the electromagnet		
	The size of the paper clips		
	The size of the current through the wire		10

outside the

box

Figure 7 shows the main energy transfers from a house. 0 4 Figure 7 Through the roof Through the walls Through the windows Through the floor 0 4 Which two changes to the house would reduce the rate of energy transfer? [2 marks] Tick two boxes. Add thermal insulation to the roof Increase the temperature of the house Decrease the thickness of the walls Replace the single-glazed windows with double-glazed windows Use materials with a higher thermal conductivity Question 4 continues on the next page


The temperature inside the house is controlled using a thermostat.

The thermostat switches the heating on when the temperature drops below a chosen value.

The thermostat switches the heating off when the temperature rises above the chosen value.

Figure 8 shows how the temperature of the house changes over a 150 minute period.

Figure 8

0 4. 2 For how many minutes was the heating switched on?

[1 mark]

Number of minutes =

0 4.3	The householder installs cavity wall insulation.	Do not write outside the box
	What would happen to the time taken for the temperature to fall between points A and B ?	
	Tick one box. [1 mark]	
	The time taken decreases	
	The time taken increases	
	The time taken stays the same	
0 4.4	The householder has solar panels installed on the roof to heat water.	
	The householder can also heat water with an immersion heater which uses mains electricity.	
	Explain one advantage and one disadvantage of using a solar panel to heat water for the house, compared to the immersion heater. [4 marks]	
	Advantage	
	Disadvantage	
		8
	Turn over for the next question	

box

Do not write outside the 0 5 Figure 9 shows the apparatus used to pass a current through copper sulfate solution. Figure 9 X Negative electrode Positive electrode Copper sulfate solution What is the name of component **X** in **Figure 9**? 5 [1 mark] Tick **one** box. Ammeter Battery Fuse Switch

0 5.2	What is the name of the process happening in Tick one box.	n Figure 9 ?	[1 mark]	Do not write outside the box
	Combustion			
	Crystallisation			
	Distillation			
	Electrolysis			
0 5.3	A student investigated how the concentration mass of copper deposited on the negative elements what are the independent and dependent variables.	riables in this investigation?	ects the	
	Draw one line from each type of variable to the correct description. [2 marks]			
	Type of variable	Description		
		Concentration of copper sulfate solution		
	Independent variable	Distance between electrodes		
	Dependent variable	Mass of copper deposited		
		Time circuit is switched on for		
	Question 5 continues on the	e next page		

Table 5 shows the student's results.

Table 5

Concentration of copper sulfate solution in g/dm ³	Mass of copper deposited in grams
30	0.04
60	0.08
90	0.12
120	0.07
150	0.20

0 5.4	The result for the concentration of 120 g/dm³ is anomalous. What may have caused the anomalous result? [1 mark] Tick one box.
	Some copper fell off the electrode
	The circuit was switched on for too much time
	The concentration of the solution was too high
0 5 . 5	Predict the expected mass of copper deposited for the concentration of 120 g/dm³ Use Table 5 . [1 mark]
	Mass of copper = g

0 5 . 6	During the investigation copper ions move to the negative electrode.		Do not write outside the box
	Complete the sentence.		
	Choose the answer from the box.	[1 mark]	
		[1 mark]	
	a negative charge a positive charge no charge		
	Copper ions move to the negative electrode because copper ions have		
0 5.7	Solid copper sulfate does not conduct electricity.		
	What is the reason for this?	[1 mark]	
	Tick one box.		
	The charge on the ions is too high		
	The ions are too big		
	The ions are too small		
	The ions cannot move		
	Question 5 continues on the next page		

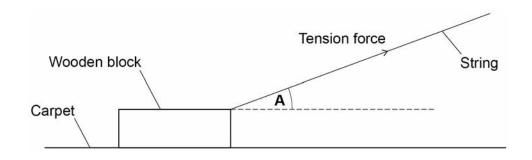
0 5 . 8	In a different investigation, a student passed a current of 0.6 A through copper sulfate solution for 300 s Calculate the charge flow through the solution. Use the equation:	Do not write outside the box
	charge flow = current × time	
	[2 marks]	
	charge flow = coulombs	10

box

Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Dο	not	write
ou	tside	e the
	ho	~

0 6 A student investigated the frictional force between an object and a surface.


The student used a string to pull a small wooden block across different surfaces. The block was pulled at a constant speed in a straight line.

Pulling the block causes a tension force in the string.

The student kept the angle of the string the same each time.

Figure 10 represents the block being pulled across a piece of carpet.

Figure 10

0 6 1 Measure angle A on Figure 10.

[1 mark]

Angle A = degrees

0 6 . 2 Complete the sentences.

Choose answers from the box.

[2 marks]

controlled	dependent	scalar	valid	vector
	•	•		

Force has both magnitude and direction, so is a _____ quantity.

A quantity with magnitude only is a quantity.

0 6.3	Two forces acting on the block are tension and friction.	Do not write outside the box
	Name one other force acting on the block.	
	[1 mark]	
0 6.4	When the student pulled the block with a constant force, the velocity of the block did not change.	
	What is the best explanation for this?	
	Tick one box. [1 mark]	
	Force is directly proportional to velocity	
	No work is done by the pulling force	
	The block is moving in a straight line	
	The resultant force on the block is zero	
	Question 6 continues on the next page	

The student pulled the block along four different surfaces:

Do not write outside the box

- cardboard
- carpet
- glass
- sandpaper.

0 6 . 5	Give two control variables for this investigation.	[2 marks]
	1	
	2	

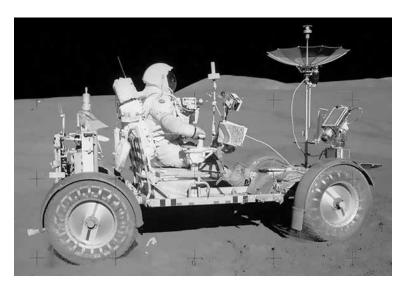
Table 6 shows the results.

Table 6

Surface	Force to pull the block in newtons			Mean force	
Surface	Trial 1	Trial 2	Trial 3	in newtons	
cardboard	1.4	1.6	1.5	1.5	
carpet	2.5	3.0	3.9	3.2	
glass	0.7	0.8	0.6	0.7	
sandpaper	5.2	5.6	5.4	х	

0 6 . 6	Calculate value X in Table 6 .		[1 mark]
		X =	N
0 6 . 7	Which surface produced the lowest friction force?		[1 mark]

9


Do not write
outside the
hox

ı	0	7	Astronauts have been to the Moon.
	•		

0 7 . 1 Astronauts moved around the surface of the Moon in a lunar rover.

Figure 11 shows a lunar rover.

Figure 11

The batteries on the lunar rover provided a potential difference of 36 V

The total charge stored in the batteries was 870 000 C

Calculate the maximum energy that could have been transferred from the batteries.

Use the equation:

energy transferred = charge flow x potential difference	[2 marks]
Maximum energy transferred =	J

Question 7 continues on the next page

Explain why.		**	
		[2 m	nark
-			
The astronauts coll	ected rock samples from the Mo	oon.	
	I the percentages of elements in	Moon rock and Earth rock.	
Table 7 shows the			
	Table 7		7
Element	Percentage in Moon rock	Percentage in Earth rock	
Aluminium	8	8	
Iron	13	5	
Oxygen	42	47	
Silicon	х	28	

0 7.4	Give one similarity and one difference between Moon rock and Earth rock.		Do not write outside the box
	Use Table 7 .	2 marks]	
	Similarity		
	Difference		
0 7.5	Scientists used to think the Earth and Moon formed separately. Scientists now believe that the Moon formed after a collision between the Eart	h and	
	a small planet.	n anu	
	This new idea came from the study of Moon rocks.		
	Why do scientific theories sometimes change?	[4 morls]	
	Tick one box.	[1 mark]	
	Scientists agree that the existing theory is old-fashioned		
	Scientists change their theories to make the theories more popular		
	Scientists decide that the new theory is more exciting		
	Scientists discover new evidence which the existing theory cannot explain		
	Question 7 continues on the next page		

0 7.6	Write down the equation which links gravitational field strength, gravitational potential energy, height and mass. [1 mark]	Do not write outside the box
0 7.7	When the astronauts left the Moon, they used a spacecraft with a mass of 2150 kg Calculate the height reached by the spacecraft at the point where it had a gravitational potential energy of 86 000 000 J The gravitational field strength of the Moon is 1.6 N/kg [3 marks]	
	Height =m	12

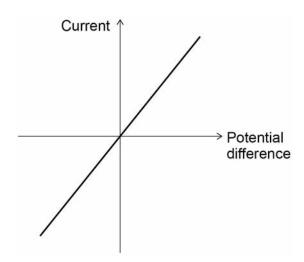

0 8	A light dependent resistor (LDF	R) is connected in a circuit.		Do not write outside the box
0 8.1	Draw the circuit symbol for an	LDR.	[1 mark]	
0 8.2	an LDR.	tionship between current and p		
	Tick one box.	connected the ammeter and vol	[1 mark]	
	Ammeter	Voltmeter		
	in parallel with LDR	in parallel with LDR		
	in parallel with LDR	in series with LDR		
	in series with LDR	in parallel with LDR		
	in series with LDR	in series with LDR		
	Question 8 co	ntinues on the next page		

Figure 12 shows a sketch graph of the student's results.

The LDR was in a constant bright light.

Figure 12

The student concluded that the current in the LDR is inversely proportional to the potential difference across the LDR.

Explain why the student's conclusion is incorrect.

[2 marks]

0 8.4 The student repeated the investigation with the LDR in constant dark conditions.

Sketch on Figure 12 the graph for the LDR in constant dark conditions.

[2 marks]

	33	
	The LDR was placed near a light source.	Do not write outside the box
	The following results were recorded:	
	potential difference = 5.50 V	
	current = 12.5 mA	
0 8 . 5	Write down the equation that links current, potential difference and resistance. [1 mark]	
0 8.6	Calculate the resistance of the LDR. [4 marks]	
	Resistance = Ω	11
	Turn over for the next question	

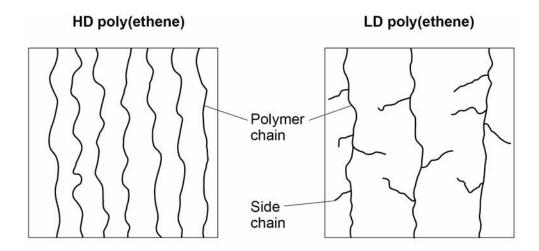
- **0 9** Supermarket carrier bags can be made from poly(ethene).
- 0 9.1 Poly(ethene) is produced from ethene.

The structure of ethene is:

Complete the structure of poly(ethene).

[2 marks]

$$\begin{pmatrix}
H & H \\
C & C \\
H & H
\end{pmatrix}$$



There are two types of poly(ethene): HD poly(ethene) and LD poly(ethene).

0 9 . 2

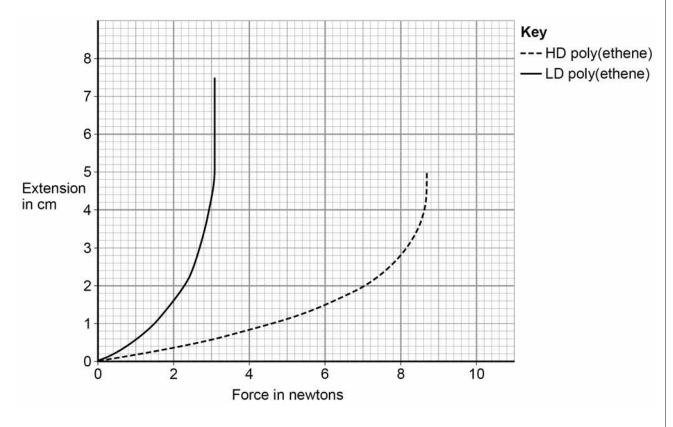
Figure 13 shows the polymer chains in HD poly(ethene) and LD poly(ethene).

Figure 13

Describe the differences in the structure and arrangement of the polymer chains in the two types of poly(ethene).

[2 marks]

Question 9 continues on the next page


A student investigated how poly(ethene) extends when a force is applied.

Describe a method to investigate how the extension of poly(ethene) changes with the force applied.

[4 marks]

Figure 14 shows the results for HD poly(ethene) and LD poly(ethene).

Give two comparisons between the results for HD poly(ethene) and for LD poly(ethene).
Use Figure 14.
[2 marks]
1
2
Carrier bags in supermarkets used to be provided free. Supermarkets now make customers pay for carrier bags.
When they were free, 8.0 billion new carrier bags were used each year.
After supermarkets started making customers pay for carrier bags, the use of new bags dropped by 85%
Calculate how many carrier bags are now used each year.
[2 marks]
Number of bags =
Question 9 continues on the next page

0 9 . 6

There are two types of carrier bag in common use:

- disposable bags
- bags for life.

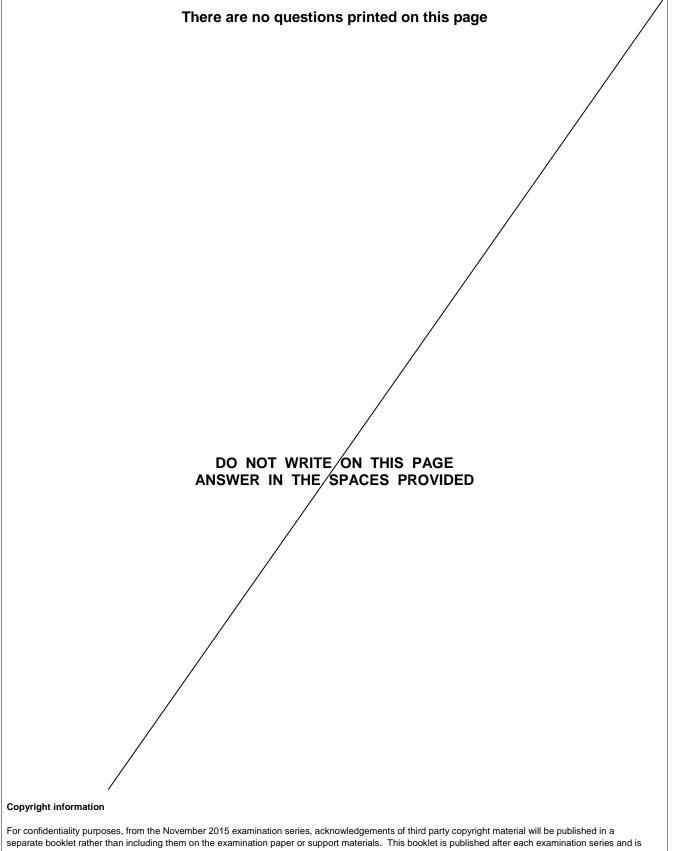
Bags for life can be returned to the supermarket when no longer usable.

The supermarket replaces the bag for life free of charge and arranges for the bag to be recycled.

Table 8 shows data from a life cycle assessment (LCA) for the two types of carrier bag.

Table 8

	Disposable bag	Bag for life
Type of polymer	HD poly(ethene)	LD poly(ethene)
Raw material from which polymer is made	Crude oil	Crude oil
Mass of waste material per bag from production in grams	0.42	0.17
Mass of carbon dioxide emitted per bag during production and transport in grams	1.6	6.9
Mean number of times used	1	6
Possible disposal methods	Landfill Incineration Recycling	Landfill Incineration Recycling



	_
Evaluate the use of each type of carrier bag.	Do not write outside the box
Use data from Table 8 and your own knowledge. [6 marks]	
	18

END OF QUESTIONS

box

available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2018 AQA and its licensors. All rights reserved.

