www.xtrapapers.com

GCSE Physics (8463)

Physics Equations Sheet

[Turn over]

1	pressure due to a column of liquid = height of column × density of liquid × gravitational field strength (g)	ρ = h ρ g
2	(final velocity) ² – (initial velocity) ² = 2 × acceleration × distance	v ² – u ² = 2 a s
3	force = time taken	$F = \frac{m \Delta v}{\Delta t}$
4	elastic potential energy = 0.5 × spring constant × (extension) ²	$E_e = \frac{1}{2} k e^2$
5	change in thermal energy = mass × specific heat capacity × temperature change	$\Delta E = m c \Delta \theta$

6	period = 1 frequency	$T = \frac{1}{f}$
7	magnification = $rac{ ext{image height}}{ ext{object height}}$	
8	force on a conductor (at right angles to a magnetic field) carrying a current = magnetic flux density × current × length	F = B I l
9	thermal energy for a change of state = mass × specific latent heat	E = m L

Equations 1, 3, 8, 10 and 11 are for Higher Tier only.

[Turn over]

10	potential difference across primary coil potential difference across secondary coil	$\frac{V_{\rm p}}{V_{\rm s}} = \frac{n_{\rm p}}{n_{\rm s}}$
	_ number of turns in primary coil	
	number of turns in secondary coil	
11	potential difference across primary coil × current in primary coil	$V_p I_p = V_s I_s$
	 potential difference across secondary coil × current in secondary coil 	
12	For gases: pressure × volume = constant	p V = constant

Equations 1, 3, 8, 10 and 11 are for Higher Tier only.

Insert for GCSE Physics (8463)/E3