

Please write clearly in	າ block capitals.		
Centre number		Candidate number	
Surname			
Forename(s)			
Candidate signature			 J

GCSE COMBINED SCIENCE: TRILOGY

Foundation Tier Chemistry Paper 1F

Thursday 17 May 2018 Morning Time allowed: 1 hour 15 minutes

Materials

For this paper you must have:

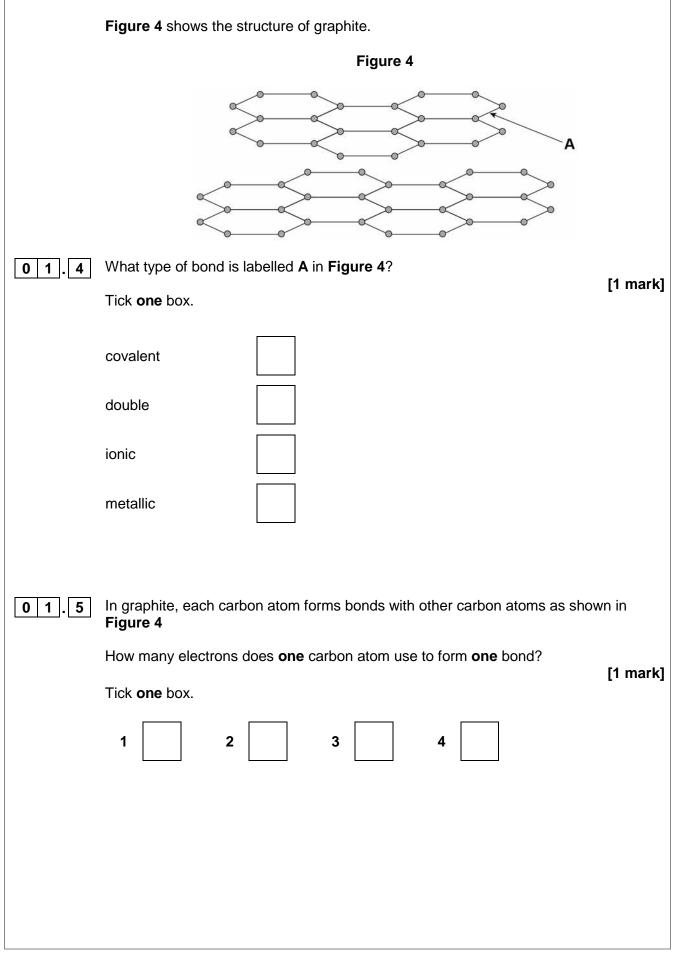
- a ruler
- · a scientific calculator
- the periodic table (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

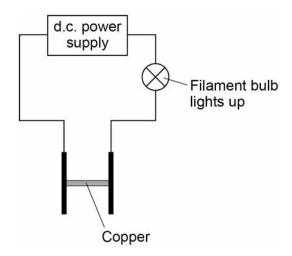
Information

- The maximum mark for this paper is 70.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.


For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
TOTAL	

0 1	This question is about structure and bonding.	Do not write outside the box
0 1.1	Figure 1 shows part of the structure of calcium oxide (CaO).	
	Figure 1	
	2- 2+ 2- 2+ 2- 2+ 2- 2+ 2-	
	What type of bonding is present in calcium oxide? [1 mark]	
	Tick one box.	
	Covalent	
	Ionic	
	Macromolecular	
	Metallic	

0 1.2	Figure 2 shows a particle of methane (CH ₄).		
	Figure 2		
	H—C—H 		
	What type of particle is present in Figure 2 ?		
	Tick one box.	nark]	
	An ion		
	A lattice		
	A molecule		
	A polymer		
0 1.3	Figure 3 shows the structure of C ₆₀		
	Figure 3		
	Complete the sentence.		
	Choose the answer from the box. [1		
	diatomic giant ionic a fullerene giant metallic	-	
	The structure of C_{60} is		



An electric current is passed through copper.

Figure 5 shows the apparatus used.

Figure 5

0 1 . 6 Complete the sentence.

Choose the answer from the box.

[1 mark]

gas liquid solid solution

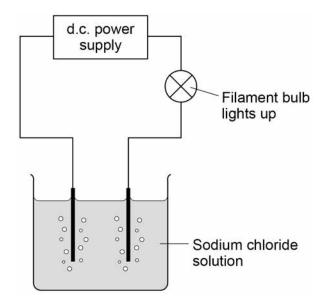
Figure 5 shows that copper conducts electricity as a

0 1 . 7 Complete the sentence.

Choose the answer from the box.

[1 mark]

atoms electrons ions molecules


Copper conducts electricity because of the movement of delocalised ______ .

0 1 . 8

Figure 6 shows the apparatus used to investigate the effect of electricity on sodium chloride solution.

Figure 6

Complete the sentence.

Choose the answer from the box.

[1 mark]

dissolved gaseous molten

Figure 6 shows that sodium chloride conducts electricity when

0 1 . 9 Sodium chloride is made up of ions.

Figure 7 shows the apparatus used to investigate the effect of electricity on solid sodium chloride and molten sodium chloride.

Figure 7

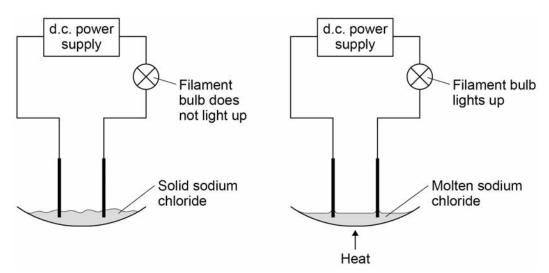


Table 1 shows the results.

Table 1

	Solid sodium chloride Molten sodium chloride	
Observation	The filament bulb does not light up	The filament bulb lights up
Deduction	Does not conduct electricity	Does conduct electricity

Draw one line from each statement to the correct reason.

[2 marks]

Statement

Reason

The ions are fixed.

The ions are mobile.

Solid sodium chloride does not conduct electricity.

The ions are neutral.

Molten sodium chloride conducts electricity.

The ions are vibrating.

10

0 2	This question is about the halogens.	
0 2 . 1	Which group in the periodic table is known as the halogens?	
	Tick one box.	[1 mark]
	Group 1	
	Group 2	
	Group 7	
	Group 0	
0 2.2	A fluorine atom has 7 electrons in the outer shell. Figure 8 shows part of a dot and cross diagram to represent a molecule of	
	fluorine (F ₂).	
	Complete the dot and cross diagram.	
	You should show only the electrons in the outer shells.	[2 marks]
	Figure 8	
	F F	
0 2.3	Chlorine reacts with potassium bromide solution.	
	Complete the word equation.	[2 marks]
	potassium chlorine + bromide → +	

0 2.4	What type of reaction happens when chlorine reacts with potassium bromide solution? [1 mark] Tick one box.
	decomposition
	displacement
	neutralisation
	precipitation
0 2 . 5	Complete the sentence.
	Choose the answer from the box. [1 mark]
	an atom an electron a neutron a proton
	Chlorine is more reactive than bromine.
	This is because chlorine gains more easily.
0 2 . 6	How does the size of a chlorine atom compare with the size of a bromine atom?
	Complete the sentence.
	Choose the answer from the box. [1 mark]
	bigger than the same size as smaller than
	A chlorine atom is a bromine atom.

0 2 . 7	Give a reason for your answer to question 02.6		Do not write outside the box
	Reason		
0 2.8	Fluorine reacts with chlorine to produce CIF ₃ Balance the chemical equation for the reaction.		
	$Cl_2 + \underline{\hspace{1cm}} F_2 \rightarrow \ 2 \ ClF_3$	[1 mark]	
0 2.9	Explain why fluorine is a gas at room temperature. Use the following words in your answer:		
	energy forces molecules weak	[3 marks]	

0 3	This question is about acids and bases.
0 3 . 1	Which ion is found in all acids? Tick one box. Cl H ⁺ Na ⁺ OH OH
0 3.2	Zinc nitrate can be produced by reacting an acid and a metal oxide. Name the acid and the metal oxide used to produce zinc nitrate. [2 marks]
0 3.3	Metal oxide
	Dissolved in water Insoluble Not all reacted Reactant
0 3.4	The pH of a solution is 8 Some hydrochloric acid is added to the solution. Suggest the pH of the solution after mixing. [1 mark] pH =

0 3 . 5

Table 2 shows the solubility of three solids in water at room temperature.

Table 2

Solid	The mass of the solid that dissolves in 100 cm ³ of water
Phosphorus oxide	50 g
Silicon dioxide	0 g
Sodium hydroxide	100 g

A teacher labelled these three solids A, B and C.

She gave a student the information shown in Table 3

Table 3

Solid	Observation when added to water	pH of the solid in water
Α	colourless solution	14
В	colourless solution	2
С	solid does not dissolve	7

Describe a method that could be used to identify each of the three solids A, B and C.

You must use an indicator in the method.

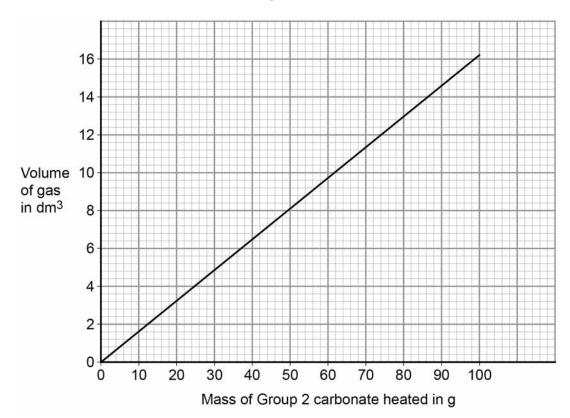
Use information in Table 2 and Table 3

[4	marks]

9

This question is about the elements in Group 2 of the periodic table.		
Figure 9 shows the positions of four elements, A, B, C, and D, in the periodic table.		
Figure 9		
В		
A C		
Which element is in Group 2? [1 mark]		
Tick one box.		
A		
Question 4 continues on the next page		

box


Group 2 metal carbonates break down when heated to produce a metal oxide and a metal carbonate → metal oxide + gas Name the two products when calcium carbonate (CaCO₃) is heated. [2 marks] and What type of reaction happens when a compound breaks down? 0 4 [1 mark] Tick **one** box. burning decomposition neutralisation reduction The metal carbonate takes in energy from the surroundings to break down. 0 4 What type of reaction takes in energy from the surroundings? [1 mark] Tick **one** box. combustion electrolysis endothermic exothermic

n	1		5
U	4	•	3

Figure 10 shows the volume of gas produced when a Group 2 metal carbonate is heated.

Figure 10

The student collected 5.2 dm³ of gas.

What mass of the Group 2 metal carbonate is heated?

[1 mark]

Mass = ______

0 4 . 6	Calculate the mass of the Group 2 carbonate needed to produce 24 dm ³ of gas.
	Use your answer from question 04.5 to help you.

[2 marks]

Mass = _____ g

Do no	ot	write
outsi	de	the
b	KO	(

0 4 . 7

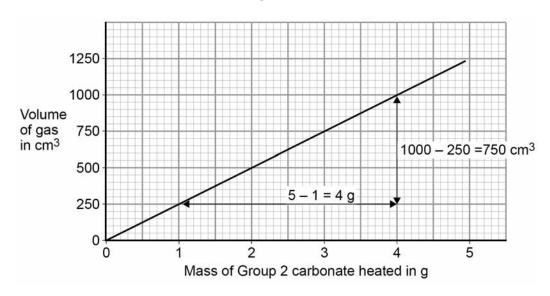

A student heated different masses of a Group 2 carbonate. The student measured the volume of gas produced.

Figure 11 shows a graph of the student's results.

The student calculates the gradient of the line in Figure 11

The student makes two mistakes.

Figure 11

Correct formula for gradient = $\frac{\text{Increase in volume of gas}}{\text{Increase in mass of Group 2 metal carbonate heated}}$

Student's calculation = $\frac{4}{750}$ = 0.00533 cm³ per g

Identify the two mistakes the student makes.

Calculate the correct gradient of the line.

[4 marks]

Mistake 1		
Mistake 2		
Calculation		
	Gradient =	cm ³ per g

0 4.8	A student repeated the experiment with a different Group 2 metal carbonate ($\mathbf{X}CO_3$). The relative formula mass (M_r) of $\mathbf{X}CO_3$ is 84
	Relative atomic masses (A_r) : $C = 12$ $O = 16$
	Calculate the relative atomic mass (A_r) of X .
	Name metal X.
	Use the periodic table. [4 marks]
	Relative atomic mass (A _r) =
	Metal X is

16

Turn over for the next question

box

0 5 This question is about electrolysis. A student investigates the mass of copper produced during electrolysis of copper chloride solution. Figure 12 shows the apparatus. Figure 12 d.c. power supply Inert carbon electrode 0000 Copper chloride solution 0 5 . Which gas is produced at the positive electrode (anode)? [1 mark] Tick **one** box. carbon dioxide chlorine hydrogen oxygen

0 5 . 2	Copper is produced at the negative electrode (cathode). What does this tell you about the reactivity of copper? Tick one box. Copper is less reactive than hydrogen Copper is less reactive than oxygen Copper is more reactive than carbon Copper is more reactive than chlorine			[1 mark]	
	Table 4 shows the	e student's results	s. Table 4		
		Tot	al mass of copp	er produced in	mg
	Time in mins	Experiment 1	Experiment 2	Experiment 3	Mean
	1	0.60	0.58	0.62	0.60
	2	1.17	1.22	1.21	1.20
	4	2.40	2.41	2.39	2.40
	5	3.02	X	3.01	3.06
0 5. 3 Determine the mean mass of copper produced after 3 minutes. [1 magestates]			[1 mark]		
	Qı	uestion 5 contin		page	mg

0 5.4	Calculate the mass X of copper produced in Experiment 2 after 5 minutes. Use Table 4 on page 19 [2 marks]	Do not write outside the box
	Mass X = mg	
0 5 . 5	The copper chloride solution used in the investigation contained 300 grams per dm³ of solid CuCl₂ dissolved in 1 dm³ of water. The students used 50 cm³ of copper chloride solution in each experiment. Calculate the mass of solid copper chloride used in each experiment. [3 marks]	
	Mass = g	8

2 0

0 6	This question is about sodium and chlorine.
	Figure 13 shows the positions of sodium and chlorine in the periodic table.
	Figure 13
	Na CI
0 6.1	State one difference and one similarity in the electronic structure of sodium and of chlorine. [2 marks]
	Difference
	Similarity
0 6.2	Sodium atoms react with chlorine atoms to produce sodium chloride (NaCl).
	Describe what happens when a sodium atom reacts with a chlorine atom.
	Write about electron transfer in your answer. [4 marks]

box

0 6 . 3 The reaction between sodium and chlorine is an exothermic reaction. Complete the reaction profile for the reaction between sodium and chlorine. [2 marks] Figure 14 Relative Reactants energy Progress of reaction

IB/M/Jun18/8464/C/1F

8

	END OF QUESTIONS
	Explain the improvements the student should make to the method so that pure crystals of copper sulfate are produced. [6 marks]
	The method contains several errors and does not produce copper sulfate crystals.
	 Add one spatula of calcium carbonate to dilute hydrochloric acid in a beaker. When the fizzing stops, heat the solution with a Bunsen burner until all the liquid is gone.
	The student's method is:
0 7	A student plans a method to prepare pure crystals of copper sulfate.

IB/M/Jun18/8464/C/1F

6

outside the

box

There are no questions printed on this page DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED Copyright information For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2018 AQA and its licensors. All rights reserved.

