

Surname _____

Other Names _____

Centre Number _____

Candidate Number _____

Candidate Signature _____

AS

CHEMISTRY

Paper 2 Organic and Physical Chemistry

7404/2

Friday 25 May 2018

Morning

Time allowed: 1 hour 30 minutes

For this paper you must have:

- the Periodic Table/Data Sheet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

At the top of the page, write your surname and other names, your centre number, your candidate number and add your signature.

[Turn over]

BLANK PAGE

0 2

INSTRUCTIONS

- Use black ink or black ball-point pen.
- Answer ALL questions.
- You must answer the questions in the spaces provided. Do NOT write on blank pages.
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

INFORMATION

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

ADVICE

- You are advised to spend about 65 minutes on SECTION A and 25 minutes on SECTION B.

DO NOT TURN OVER UNTIL TOLD TO DO SO

SECTION A**Answer ALL questions in this section.****0 1****Hydrogen peroxide solution decomposes slowly to form water and oxygen.****The reaction is much faster in the presence of a manganese(IV) oxide catalyst.**

Three experiments, shown in TABLE 1, were carried out to investigate how the volume of oxygen produced varied over time under different conditions. The same mass of catalyst was used in each experiment.

TABLE 1

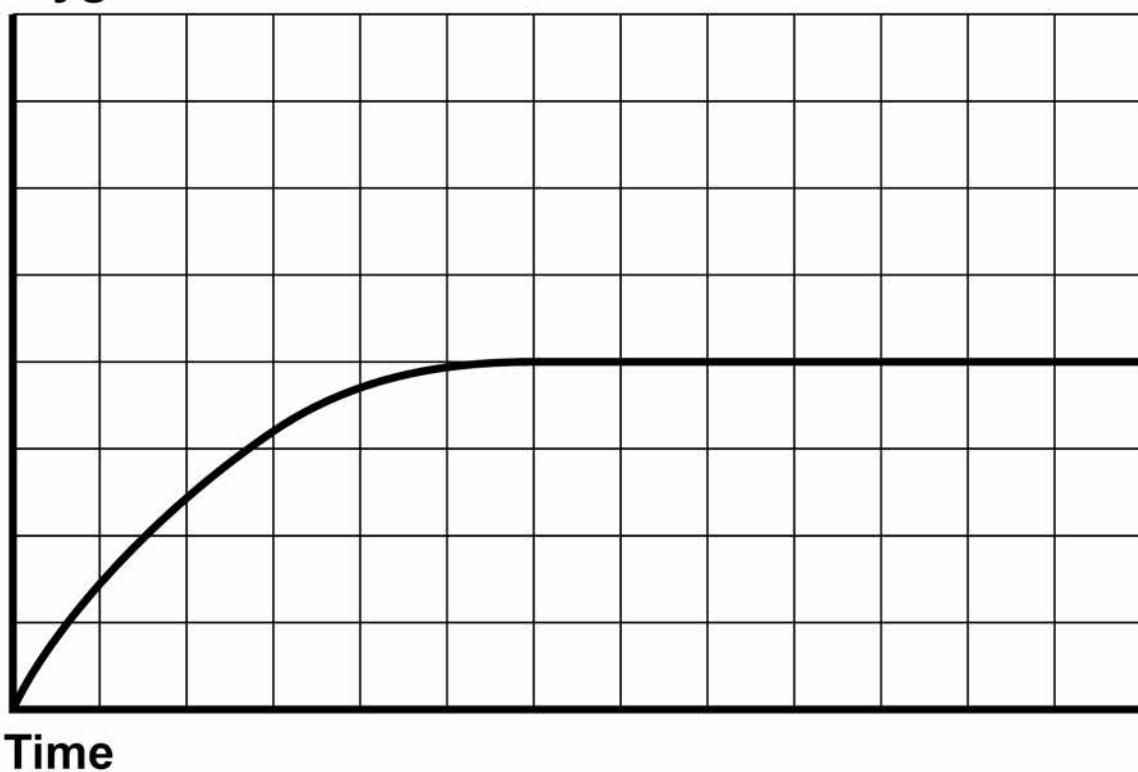

Experiment	1	2	3
Concentration of $\text{H}_2\text{O}_2(\text{aq})/\text{mol dm}^{-3}$	1.0	1.0	0.5
Volume of H_2O_2 (aq)/cm ³	50	50	50
Temperature / °C	20	20	20
Catalyst	lumps	powder	lumps

FIGURE 1 shows how the volume of oxygen collected varied with time in Experiment 1.

FIGURE 1

**Volume
of oxygen**

[Turn over]

BLANK PAGE

0 6

0 1 . 1 Explain, in general terms, how a catalyst increases the rate of a reaction. [2 marks]

0 1 . 2 Draw TWO lines on FIGURE 1, on page 5, to show how the volume of oxygen collected varied with time in Experiments 2 and 3.

**Label each line with the experiment number.
[2 marks]**

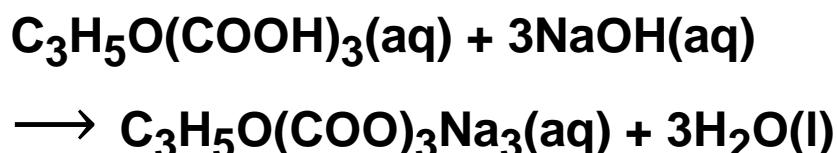
[Turn over]

BLANK PAGE

0 8

0 1. 3 Explain, in terms of collision theory, the effect of increasing the concentration of hydrogen peroxide on the rate of reaction. [2 marks]

[Turn over]


0 2

Citric acid, $C_3H_5O(COOH)_3$, occurs naturally in many fruits and can also be synthesised in the laboratory for use as a food flavouring.

A student analysed a sample of citric acid to determine its percentage purity.

The student dissolved 784 mg of impure citric acid in water to prepare 250 cm^3 of solution in a volumetric flask.

The student titrated 25.0 cm^3 samples of this solution with $0.0500\text{ mol dm}^{-3}$ sodium hydroxide solution using phenolphthalein as the indicator.

0 2 . 1 The student rinsed the burette before filling it with the sodium hydroxide solution.

State why the student should use sodium hydroxide solution rather than water for the final rinse of the burette. [1 mark]

[Turn over]

0 2 . 2 The student carried out several titrations. The results are shown in TABLE 2.

Complete TABLE 2 to show the titre in each titration. [1 mark]

TABLE 2

TITRATION	ROUGH	1	2	3
Final reading / cm ³	25.2	23.95	47.65	24.10
Start reading / cm ³	0.0	0.05	23.95	0.10
Titre / cm ³				

0 2 . 3 Calculate the mean titre using the concordant results.

Give your answer to the appropriate number of significant figures. [2 marks]

Mean titre _____ cm³

0 | 2 . 4 The total uncertainty when using the burette is $\pm 0.15 \text{ cm}^3$. This is the combination of uncertainties in the start reading, final reading and the determination of the end point.

Use your answer to Question 02.3 to calculate the percentage uncertainty for the use of the burette in this experiment. [1 mark]

Percentage uncertainty _____ %

[Turn over]

1 3

02.5 Use your answer to Question 02.3 to find the mass, in mg, of citric acid dissolved in 250 cm³ of the solution.

The relative molecular mass (M_r) of citric acid is 192.0 [3 marks]

Mass _____ mg

15

0 | 2 | . | 6 | Calculate the percentage purity of this sample of citric acid. [1 mark]

Percentage purity _____ %

9

[Turn over]

1 5

0 | 3

This question is about enthalpy changes.

0 | 3 . 1

When ethanoic acid reacts with sodium hydroxide, the enthalpy change, ΔH , is $-56.1 \text{ kJ mol}^{-1}$

Calculate the temperature rise when 25 cm^3 of 2.0 mol dm^{-3} aqueous ethanoic acid react with 25 cm^3 of 2.0 mol dm^{-3} aqueous sodium hydroxide.

Assume that both solutions have the same initial temperature, have a density of 1.0 g cm^{-3} and a specific heat capacity of $4.18 \text{ J K}^{-1} \text{ g}^{-1}$ [4 marks]

Temperature rise _____ °C

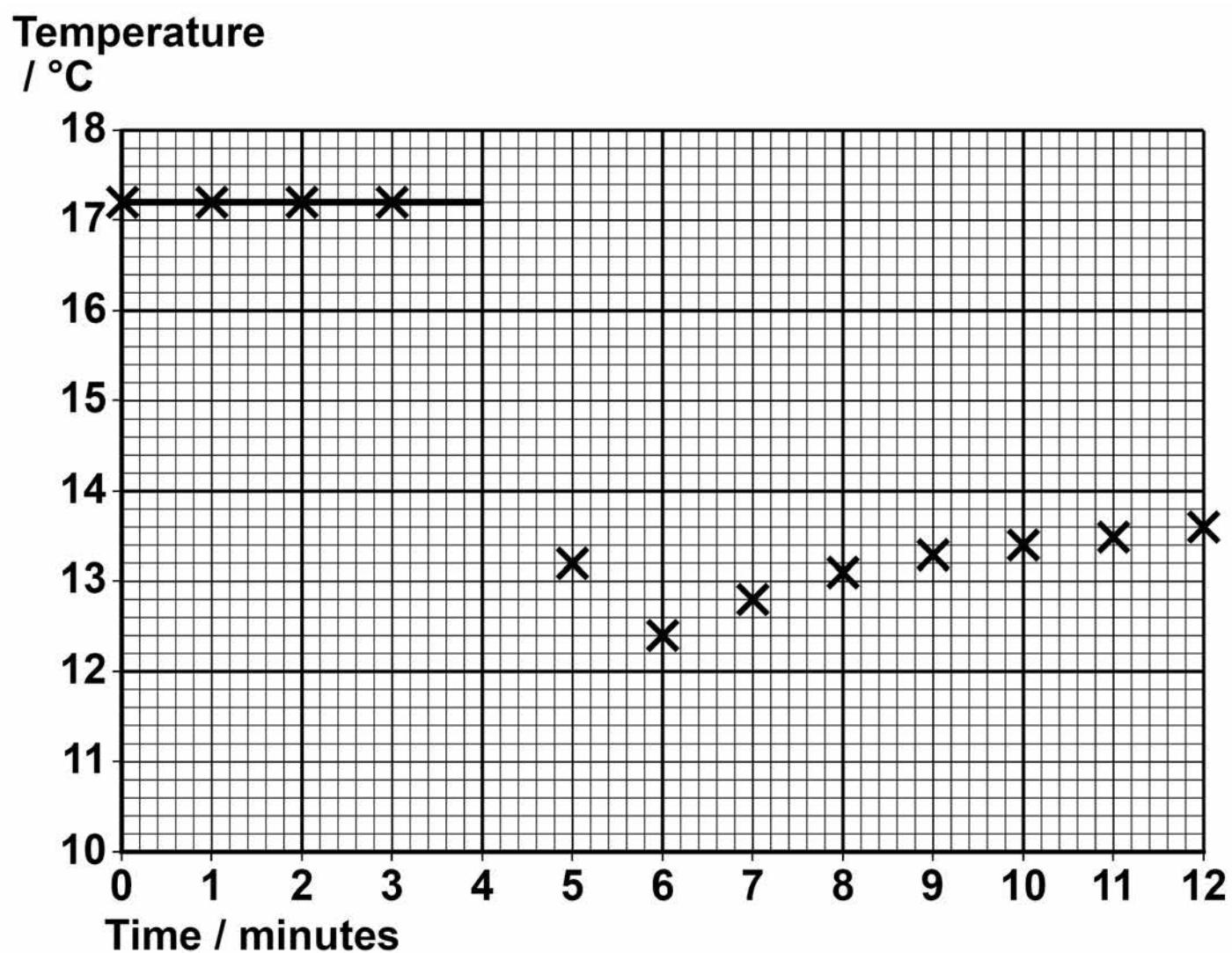
[Turn over]

1 7

0 | 3 . 2 A student recorded the temperature of aqueous ethanoic acid in a polystyrene cup for three minutes.

At the fourth minute, the student added sodium hydrogencarbonate.

The student stirred the mixture and carried on recording the temperature every minute for several minutes.


The student's measurements are shown in FIGURE 2, on page 19.

A best-fit line showing the temperature before mixing has been drawn.

Draw an appropriate best-fit line on FIGURE 2 and use it to find the temperature change at the time of mixing. [2 marks]

FIGURE 2

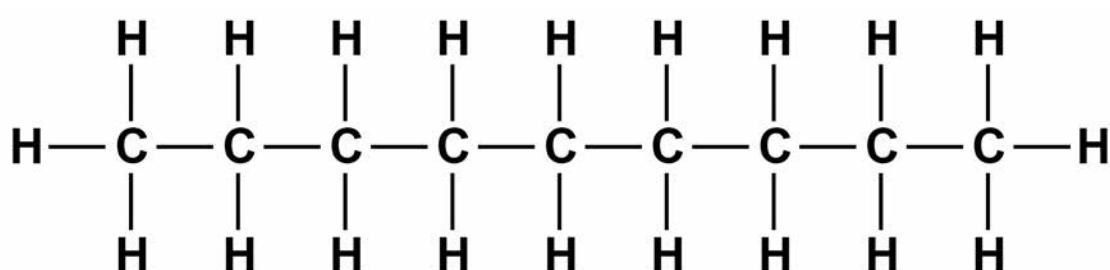
Temperature change at time of mixing

°C

[Turn over]

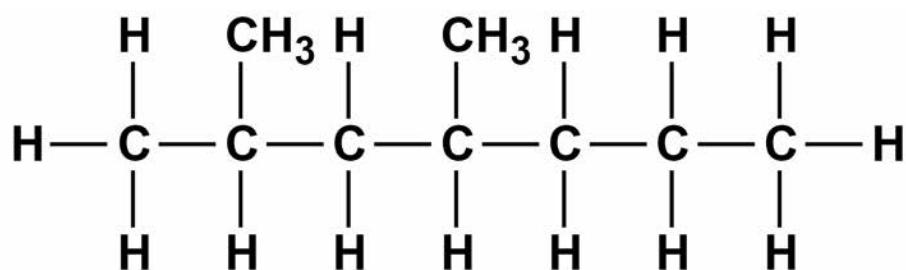
6

1 9


0 4

The alkanes nonane and 2,4-dimethylheptane are structural isomers with the molecular formula C_9H_{20}

They are found in crude oil and can be separated by fractional distillation.


Both can be used in fuels or cracked to form other products.

nonane

boiling point 151 °C

2,4-dimethylheptane

boiling point 134 °C

0 4.1 State the general formula of an alkane containing n carbon atoms. Deduce an expression for the relative molecular mass (M_r) of an alkane in terms of n . [2 marks]

General formula _____

Expression _____

[Turn over]

04.2 Explain why nonane has a higher boiling point than 2,4-dimethylheptane. [2 marks]

0 4 . 3 Give an equation for the complete combustion of nonane. [1 mark]

0 4 . 4 Nonane is often found in fuel for jet engines. Combustion in jet engines produces pollutants including nitrogen monoxide (NO).

**Explain how this nitrogen monoxide is formed.
[2 marks]**

[Turn over]

0 4 . 5 Nonane can be cracked to form large quantities of propene.

Name the type of cracking used. [1 mark]

0 4 . 6 The main use of propene, formed from cracking, is to make poly(propene).

Draw the repeating unit of poly(propene).
[1 mark]

05.1 A hydrocarbon contains 87.8% by mass of carbon and has a relative molecular mass (M_r) of 82.0

The hydrocarbon decolourises bromine water.

Determine the empirical and molecular formulae of the hydrocarbon.

Suggest TWO possible structures for the hydrocarbon.

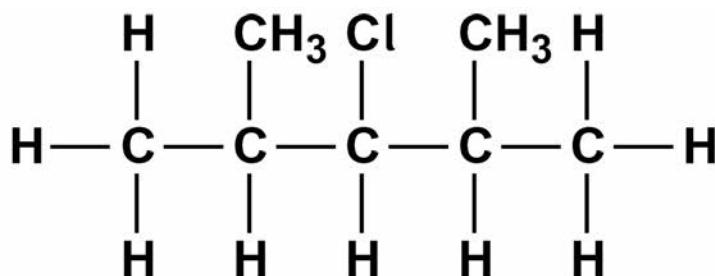
**Name the type of reaction taking place when bromine water reacts with the hydrocarbon.
[6 marks]**

[Turn over]

[Turn over]

[Turn over]

6



30

0	6
---	---

Compound A is a halogenoalkane.

COMPOUND A

0 6 . 1 Name Compound A. [1 mark]

3 0

0 6 . 2

Compound A has a relative molecular mass (M_r) of 134.5

The main isotope of hydrogen is ^1H

The main isotope of carbon is ^{12}C

Chlorine consists of two common isotopes, ^{35}Cl and ^{37}Cl , of which 75% is ^{35}Cl

The mass spectrum of A was recorded when A was ionised by electron impact to form A^+ ions.

Draw, on FIGURE 3, the peaks for the main molecular ions in the mass spectrum of A. [2 marks]

FIGURE 3

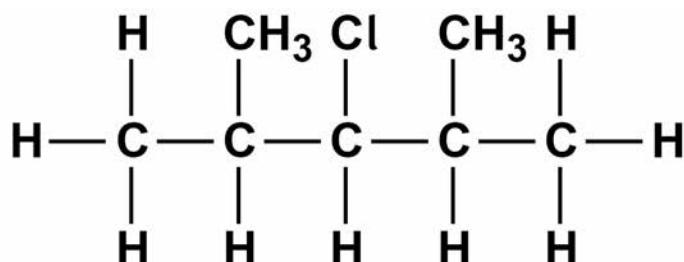
Relative abundance

[Turn over]

0 6 . 3

Reaction of A with warm, dilute aqueous sodium hydroxide forms alcohol B.

Name the mechanism for this reaction.


Outline the mechanism using the structure of A shown.

Include the structure of the product, alcohol B. [4 marks]

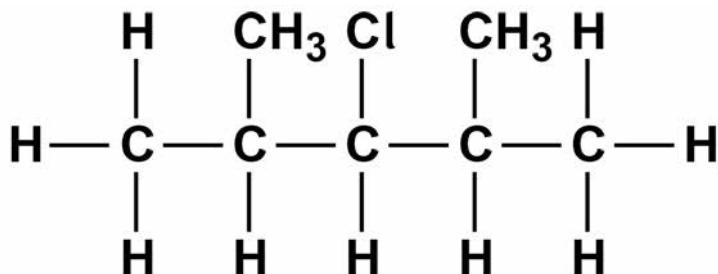
Mechanism

Outline of mechanism

[Turn over]

0 | 6 . 4 Reaction of A with hot, ethanolic potassium hydroxide gives alkene C.

Name the mechanism for this reaction.
State the role of the hydroxide ions.


Outline the mechanism using the structure of A shown.

Include the structure of the product, alkene C.
[6 marks]

Mechanism _____

Role of hydroxide ions _____

Outline of mechanism

[Turn over]

3 5

06.5 The infrared spectrum in FIGURE 4 is that of either alcohol B or alkene C.

FIGURE 4

Transmittance

/ %

100

50

0

4000

3000

2000

1500

1000

500

Wavenumber / cm^{-1}

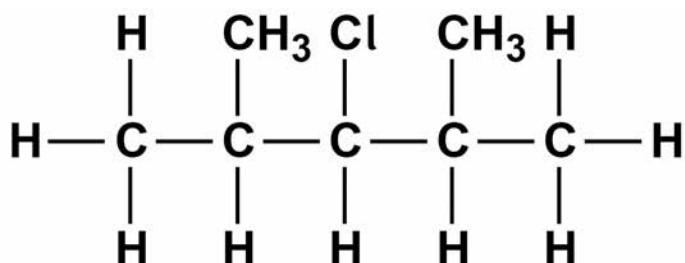
3 6

**Tick the box that shows the correct compound.
Explain your answer with reference to a bond
and the wavenumber of its absorption. [1 mark]**

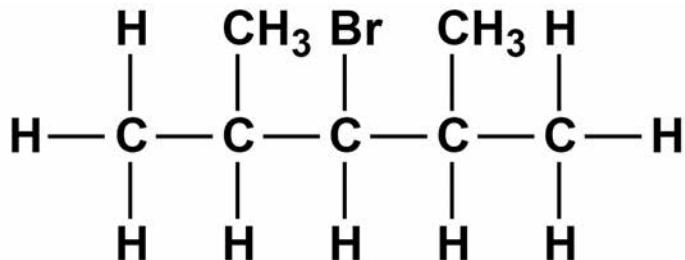
Alcohol B

Alkene C

Explanation _____



[Turn over]



06.6 Compound D reacts with dilute aqueous sodium hydroxide in a similar way to A to form alcohol B.

COMPOUND A

COMPOUND D

Explain why D reacts more quickly than A with dilute aqueous sodium hydroxide at the same temperature. [1 mark]

[Turn over]

15

07.1 Four compounds, all colourless liquids, are

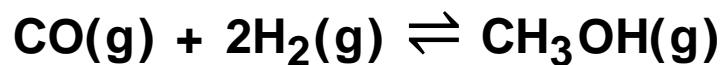
- butan-2-ol
- butanal
- butanone
- 2-methylpropan-2-ol

TWO of these compounds can be identified using different test-tube reactions.

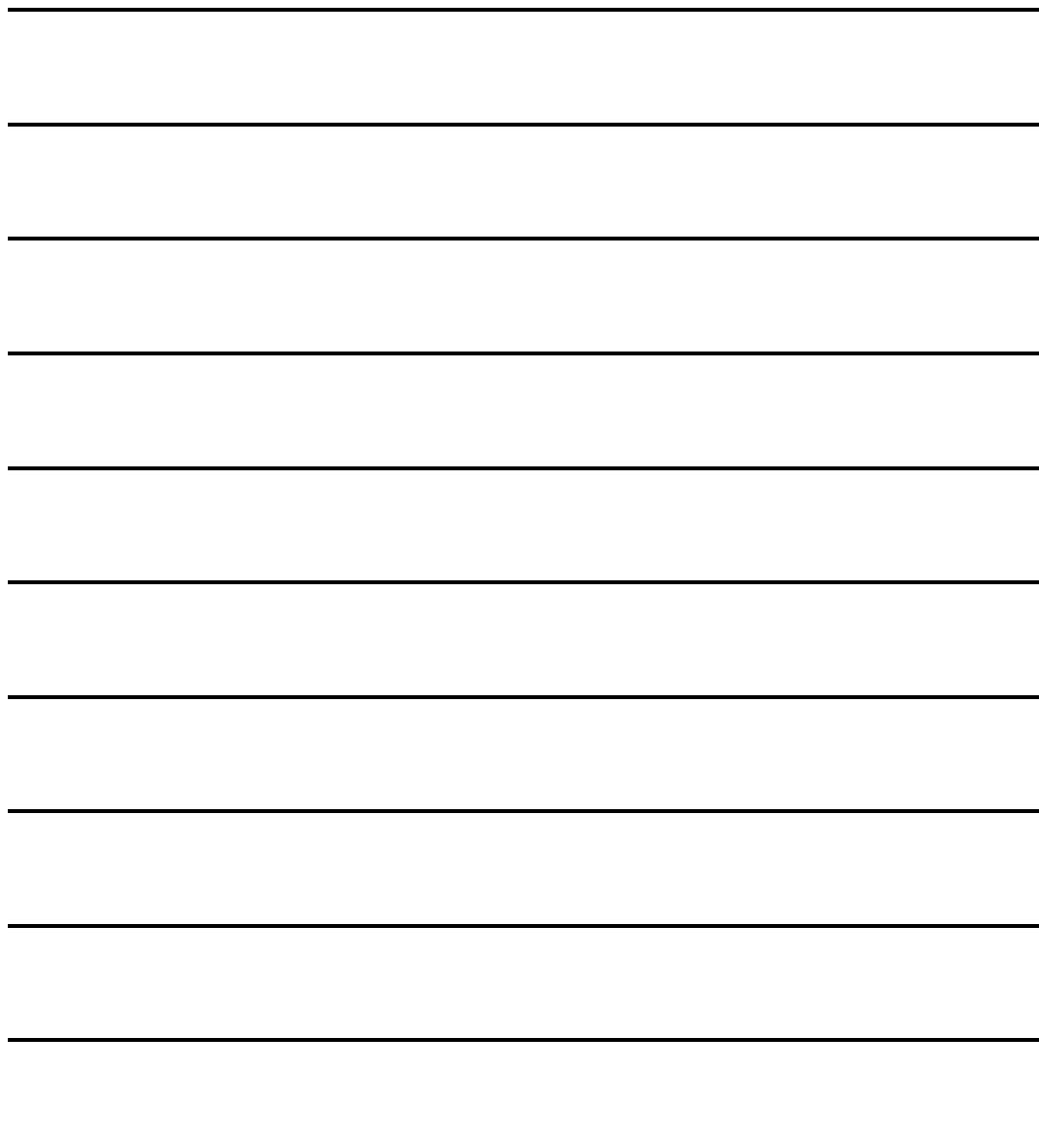
Describe these TWO test-tube reactions by giving reagents and observations in each case. Suggest how the results of a spectroscopic technique could be used to distinguish between the OTHER two compounds.

[6 marks]

[Turn over]


[Turn over]

4 3


0 | 8

Methanol can be manufactured in a reversible reaction as shown by the equation.

0 8 . 1

State and explain the effect of using a catalyst on the yield of methanol in this equilibrium. [2 marks]

45

08.2 Give an expression for the equilibrium constant (K_c) for this reaction. [1 mark]

[Turn over]

4 5

08.3 A mixture of carbon monoxide and hydrogen was allowed to reach equilibrium in a container of volume 250 cm^3 at temperature T . At equilibrium, the mixture contained 0.340 mol of carbon monoxide, 0.190 mol of hydrogen and 0.0610 mol of methanol.

Calculate the value of the equilibrium constant (K_c) for this reaction at temperature T .
[3 marks]

$$K_c \underline{\hspace{10em}} \text{mol}^{-2} \text{ dm}^6$$

08.4 Methanol decomposes on heating in a reaction that is the reverse of that used in its manufacture.

Use your answer from Question 08.3 to determine the value of K_c for this equilibrium at temperature T .

State the units for this value of K_c

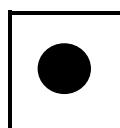
(If you were unable to complete the calculation in Question 08.3, assume a value of

$K_c = 0.825 \text{ mol}^{-2} \text{ dm}^6$. This is NOT the correct value.) [2 marks]

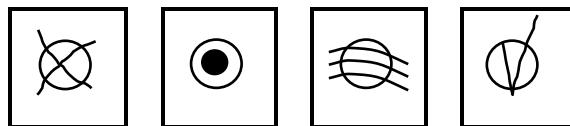
Value of K_c

Units of K_c

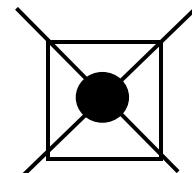
[Turn over]

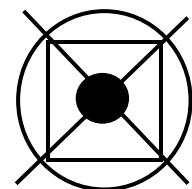

SECTION B

Answer ALL questions in this section.


Only ONE answer per question is allowed.

For each answer completely fill in the circle alongside the appropriate answer.


CORRECT METHOD


WRONG METHODS

If you want to change your answer you must cross out your original answer as shown.

If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown.

You may do your working in the blank space around each question but this will not be marked.

Do NOT use additional sheets for this working.

0 | 9

A student has a 10 cm^3 sample of $1.00 \times 10^{-2} \text{ mol dm}^{-3}$ methanoic acid solution. The student is asked to dilute the methanoic acid solution to a concentration of $2.00 \times 10^{-4} \text{ mol dm}^{-3}$ by adding distilled water.

Which volume of water should be added?

[1 mark]

A 200 cm^3

B 490 cm^3

C 500 cm^3

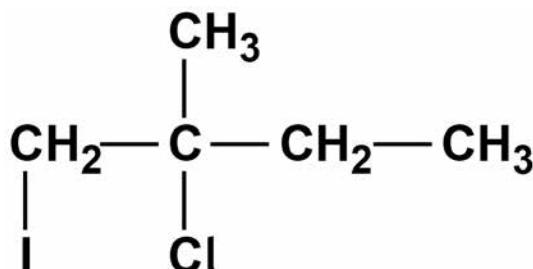
D 510 cm^3

[Turn over]

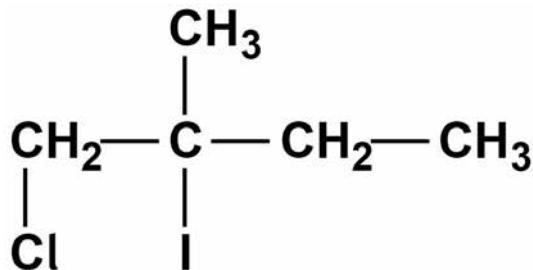
1 | 0 Which molecule does NOT have a permanent dipole? [1 mark]

A CH_3Br

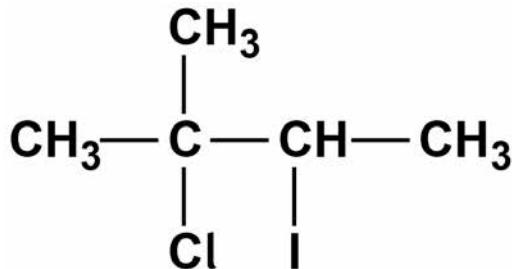
B CH_2Br_2

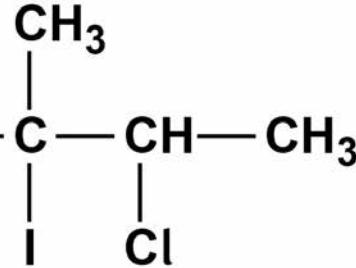

C CHBr_3

D CBr_4



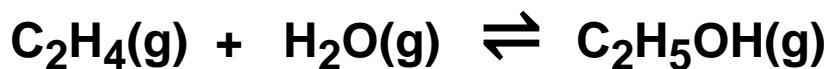
1 | 1 Which is the major product of the reaction between 2-methylbut-2-ene and iodine monochloride (ICl)? [1 mark]


A


B

C

D



[Turn over]

1 2

Which statement is NOT correct about the industrial preparation of ethanol by the hydration of ethene at 300 °C? [1 mark]

$$\Delta H = -46 \text{ kJ mol}^{-1}$$

A The reaction is catalysed by an acid.

B The higher the pressure, the higher the equilibrium yield of ethanol.

C The higher the temperature, the higher the equilibrium yield of ethanol.

D A low equilibrium yield of ethanol is acceptable because unreacted ethene is recycled.

1 | 3 Which compound has the highest boiling point?
[1 mark]

A butanal

B butan-2-ol

C but-2-ene

D 1-fluorobutane

[Turn over]

1 | 4 Which statement is correct about the fractional distillation of crude oil? [1 mark]

A A zeolite catalyst is used.

B Each fraction contains a mixture of hydrocarbons.

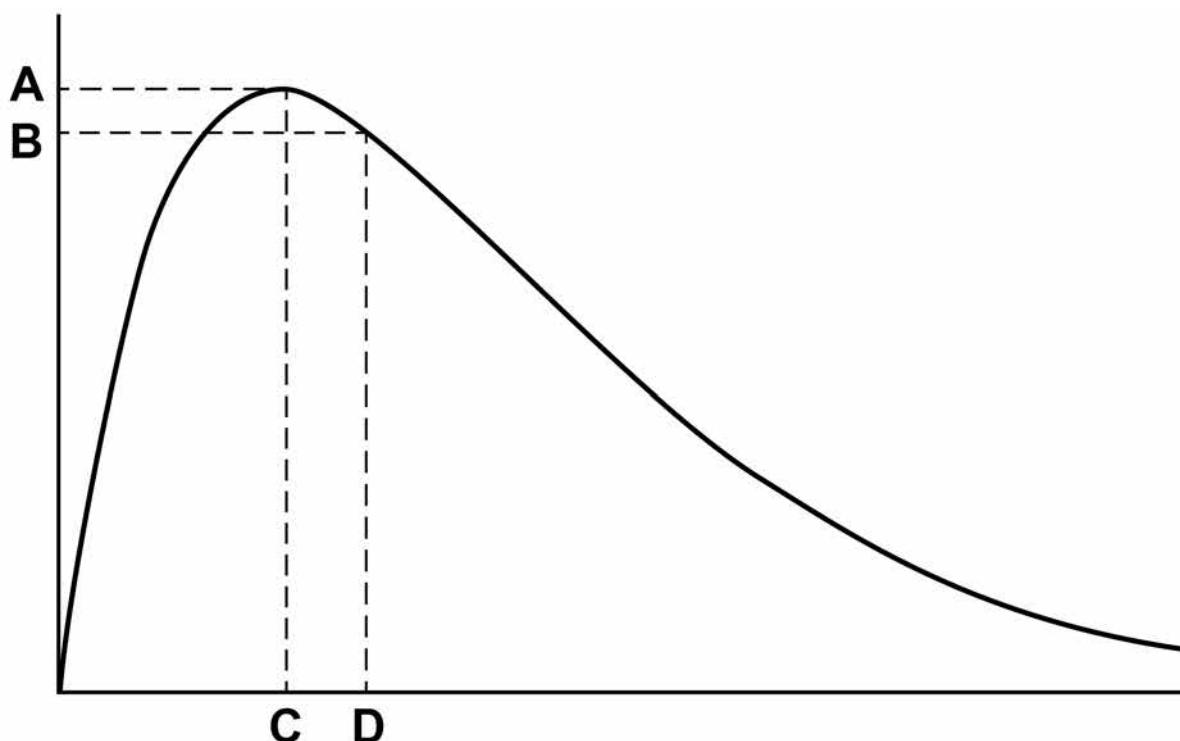
C Gaseous fractions are formed by breaking covalent bonds.

D The fractionating column is hottest at the top.

1 | 5

How many structural isomers with an unbranched carbon chain have the molecular formula $C_4H_8Br_2$? [1 mark]

A 4**B 5****C 6****D 7**


[Turn over]

5 5

16 The Maxwell–Boltzmann distribution of molecular energies in a sample of gas at a fixed temperature is shown.

Which letter represents the mean energy of the molecules? [1 mark]

A

B

C

D

1 7

Ethanol can be made from glucose by fermentation.

In an experiment, 268 g of ethanol ($M_r = 46.0$) were made from 1.44 kg of glucose ($M_r = 180.0$).

What is the percentage yield? [1 mark]

A 18.6%

B 36.4%

C 51.1%

D 72.8%

[Turn over]

1 | 8 Which species could act as a nucleophile?
[1 mark]

A BH_3

B NH_4^+

C PH_3

D SiH_4

1 | 9

Which statement is correct about poly(chloroethene)? [1 mark]

A It has the empirical formula CHCl

B It decolourises bromine water.

C Its brittleness is reduced by plasticisers.

D Its polymer chain contains alternate single and double bonds.

[Turn over]

2 | 0

What is the enthalpy of formation of buta-1,3-diene, $\text{C}_4\text{H}_6(\text{g})$? [1 mark]

Substance	Enthalpy of combustion / kJ mol^{-1}
$\text{C}_4\text{H}_6(\text{g})$	-2546
C(s)	-394
$\text{H}_2(\text{g})$	-286

A +112 kJ mol^{-1}

B -112 kJ mol^{-1}

C +746 kJ mol^{-1}

D -746 kJ mol^{-1}

2 | 1 A gas cylinder contains 5.0 kg of propane.

How many propane molecules are in the cylinder?

The Avogadro constant,

$$L = 6.022 \times 10^{23} \text{ mol}^{-1}$$
 [1 mark]

A 6.8×10^{22}

B 7.2×10^{22}

C 6.8×10^{25}

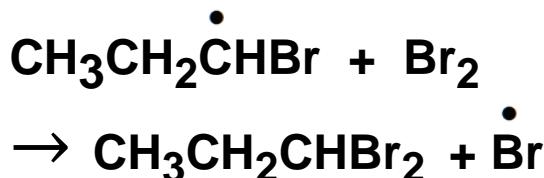
D 7.2×10^{25}

[Turn over]

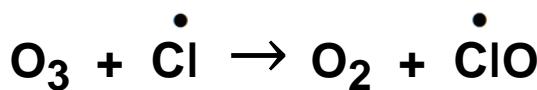
2 | 2 Which sample of liquid has the greatest volume?
[1 mark]

A 500 mg of pentane
(density = 0.63 g cm⁻³)

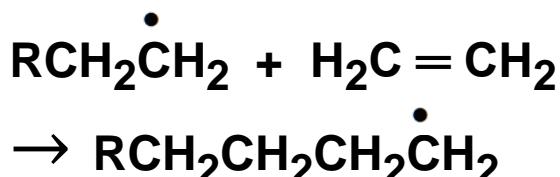
B 650 mg of propan-1-ol
(density = 0.80 g cm⁻³)

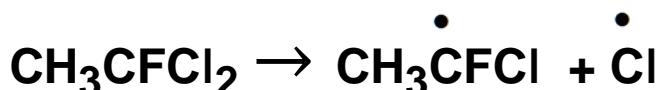

C 1.20 g of dichloromethane
(density = 1.33 g cm⁻³)

D 1.30 g of trichloromethane
(density = 1.48 g cm⁻³)



2|3 Which equation represents an initiation step?
[1 mark]


A


B

C

D

END OF QUESTIONS

15

There are no questions printed on this page

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
Section B	
TOTAL	

Copyright information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2018 AQA and its licensors. All rights reserved.

IB/M/Jun18/LO/7404/2/E4

