AQAH

www.xtrapapers.com

Level 3 Technical Level
IT: PROGRAMMING

F/507/6465

Unit 2 Computer programming

Mark scheme

January 2018

181 AF507 6465/ MS



www.xtrapapers.com

MARK SCHEME - LEVEL 3 TECHNICAL LEVEL IT- F/507/6465 — JANUARY 2018

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant
questions, by a panel of subject teachers. This mark scheme includes any amendments made at the
standardisation events which all associates participate in and is the scheme which was used by them in
this examination. The standardisation process ensures that the mark scheme covers the students’
responses to questions and that every associate understands and applies it in the same correct way.
As preparation for standardisation each associate analyses a number of students’ scripts. Alternative
answers not already covered by the mark scheme are discussed and legislated for. If, after the
standardisation process, associates encounter unusual answers which have not been raised they are
required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and
expanded on the basis of students’ reactions to a particular paper. Assumptions about future mark
schemes on the basis of one year’'s document should be avoided; whilst the guiding principles of
assessment remain constant, details will change, depending on the content of a particular examination
paper.

Further copies of this mark scheme are available from aga.org.uk

Copyright © 2018 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet
for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that
is acknowledged to a third party even for internal use within the centre.



www.xtrapapers.com

MARK SCHEME - LEVEL 3 TECHNICAL LEVEL IT- F/507/6465 — JANUARY 2018

Level of response marking instructions

Level of response mark schemes are broken down into levels, each of which has a descriptor. The
descriptor for the level shows the average performance for the level. There are marks in each level.

Before you apply the mark scheme to a student’s answer read through the answer and annotate it (as
instructed) to show the qualities that are being looked for. You can then apply the mark scheme.

Step 1 Determine a level

Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer meets the
descriptor for that level. The descriptor for the level indicates the different qualities that might be seen in
the student’s answer for that level. If it meets the lowest level then go to the next one and decide if it
meets this level, and so on, until you have a match between the level descriptor and the answer. With
practice and familiarity you will find that for better answers you will be able to quickly skip through the
lower levels of the mark scheme.

When assigning a level you should look at the overall quality of the answer and not look to pick holes in
small and specific parts of the answer where the student has not performed quite as well as the rest. If
the answer covers different aspects of different levels of the mark scheme you should use a best fit
approach for defining the level and then use the variability of the response to help decide the mark within
the level, ie if the response is predominantly level 3 with a small amount of level 4 material it would be
placed in level 3 but be awarded a mark near the top of the level because of the level 4 content.

Step 2 Determine a mark

Once you have assigned a level you need to decide on the mark. The descriptors on how to allocate
marks can help with this. The exemplar materials used during standardisation will help. There will be an
answer in the standardising materials which will correspond with each level of the mark scheme. This
answer will have been awarded a mark by the Lead Examiner. You can compare the student’s answer
with the example to determine if it is the same standard, better or worse than the example. You can then
use this to allocate a mark for the answer based on the Lead Examiner’s mark on the example.

You may well need to read back through the answer as you apply the mark scheme to clarify points and
assure yourself that the level and the mark are appropriate.

Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be
exhaustive and you must credit other valid points. Students do not have to cover all of the points
mentioned in the Indicative content to reach the highest level of the mark scheme.

An answer which contains nothing of relevance to the question must be awarded no marks.




Www.xtrapapers.com

MARK SCHEME - LEVEL 3 TECHNICAL LEVEL IT- F/507/6465 — JANUARY 2018

Question

Guidance

Mark

01

02

03

04

05




www.xtrapapers.com

MARK SCHEME - LEVEL 3 TECHNICAL LEVEL IT- F/507/6465 — JANUARY 2018

06 Explain the difference between assembly language and machine code. 2
2 marks for clear explanation, 1 mark for partial explanation, eg:
e mnemonic/numeric or hex
e symbolic/bits or bytes
o labels/fixed memory addresses
o hierarchy of languages
¢ hardware specific
o compiled (translated)/machine understandable
e instead of representing the machine language as binary, the instructions and

registers are given names/meaning.
07.1 Explain why the totals are different
2 marks for clear explanation, 1 mark for partial explanation, eg:
e There is a different scope between global and local variables (1 mark) so the 5
total inside the function does not change the value outside (1 mark)
e A variable can have a different value inside and outside a function (1 mark)
e The variable ‘total’ in the function is not assigned on return (1 mark)
e The function is called but the return value not stored (1 mark)
07.2 Without changing the function definition, fix the code so the totals are the
same.
1 mark for
11 | total = distance(0,0,8,6) 1

Allow: equalise the totals, eg total=100 online 2; distance (8, 6,8, 6) or
distance (0,0, 0,0) online 11; replace total on line 13 with line 11; make the
total variable global (allow: static).




www.xtrapapers.com

MARK SCHEME - LEVEL 3 TECHNICAL LEVEL IT- F/507/6465 — JANUARY 2018

08 In programming, what is functional decomposition?
Example answers:

¢ Functional decomposition is the process of breaking down a complex
problem into smaller parts (1 mark), these parts can then be broken down 3
further (1 mark). Therefore, developing and testing is easier/more efficient
(1 mark).

o Decomposition of software into sub-problems (1 mark) that can be developed
independently (1 mark), this is also known as modularisation (1 mark).

Allow: other valid approaches.

09.1 Use examples to explain the difference between a pre-condition loop and a
post-condition loop.

Pre-condition (2 marks)
e Check condition first, only run loop if it passes
e eg While, For, For-each

Post-condition (2 marks) 4
o Check condition at end after executing code once / single pass
e egdo... while
Allow: sequence of code that includes a pre-condition loop (1 mark) and a post-
condition loop (1 mark) with comments or other annotation/listing of outputs
which illustrates the difference stated in bullets above (up to 2 marks).
09.2 The following code should add the numbers 1, 2, 3, and 4 together and
output 10. What needs to be corrected to make this happen?
1 mark for either:
1

02 | For (int x = 1; x <= 4; x++)

02 | For (int x = 1; x < 5; x++)




www.xtrapapers.com

MARK SCHEME - LEVEL 3 TECHNICAL LEVEL IT- F/507/6465 — JANUARY 2018

10.1 Explain the concept of a programming paradigm.
Example answer:

A paradigm is a style of programming / way to classify (1 mark) based on 4
features / system of ideas (1 mark) eg in the functional paradigm computations
are expressed as the evaluation of mathematical functions (1 mark). Some
languages support one paradigm, others multiple paradigms (1 mark).

Supporting examples (1 mark)

10.2 State one language associated with the functional programming paradigm.

1 mark for example, eg:
LISP

Logo

Scheme

C#

C++

JavaScript

Python.

10.3 Name one other common programming paradigm.

1 mark for example, eg:
e Procedural
Object-oriented
Event-driven
Scripting

Logic.




www.xtrapapers.com

MARK SCHEME - LEVEL 3 TECHNICAL LEVEL IT- F/507/6465 — JANUARY 2018

111

Give three reasons why you would use a flowchart to demonstrate a
program to a client.

1 mark for each reason, eg:

e ease of understanding/present complex ideas in simple form

e represent process rather than code

e graphically rather than words

¢ something developers can refer back to and check requirements.

11.2

Using appropriate symbols, draw a flowchart extract that shows an
example of a decision and a process.

1 mark (max 1 mark) for appropriate symbols
1 mark (max 1 mark) for an example of each
1 mark (max 1 mark) for appropriate labels eg decision Y/N, direction of flow

Yes————— Process card




www.xtrapapers.com

MARK SCHEME - LEVEL 3 TECHNICAL LEVEL IT- F/507/6465 — JANUARY 2018

12.1 Explain the difference between areal and an integer variable.
1 mark for one definition, 2 marks for contrast, eg:
e Integer is a whole number
¢ Real variable/data type: 2
o has a fractional part
o stores numbers like single and double precision
o is an approximation of a real number
o do not allow: ‘is any number’.
12.2 What does the keyword const stand for and why is this different from a
variable?
1 mark for 2
e constant
e cannot change the assigned value
12.3 Explain what is meant by the terms variable, assignment and expression.
Example answers (max 3 marks):
e Assignment copies a value of an expression into the variable (1 mark) eg
testscore = 30/50 (1 mark) would enumerate 30/50 (1 mark) and assign 0.6
to the variable (1 mark); the variable could then be referenced/have its value
changed elsewhere in the program (1 mark)
e var x = score/marks (1 mark) is variable = expression (1 mark) and the 3
expression is assigned to variable ‘x’ (1 mark). A variable is storage location
paired with a symbolic identifier (1 mark). An expression is a combination of
one or more explicit values, constants, variables, operators, and functions
(1 mark) that the programming language interprets
e avariable stores a value that can be changed (1 mark)
e an assignment is the process that gives a value to a variable/of giving a
variable data to store (1 mark)
e an expression is an equation which resolves to a value (1 mark).
12.4 Give a line of code which shows the relationship between them.
1 mark for example, eg:
e testscore = 30/50 1
e var x = score/marks
e var X = expression




www.xtrapapers.com

MARK SCHEME - LEVEL 3 TECHNICAL LEVEL IT- F/507/6465 — JANUARY 2018

13.1 Explain why a developer could learn different things from client testing and
user testing.
1 mark for each point, eg:
e client and user may have different roles/expectations/understanding, eg 3
checking against requirements/brief and testing bugs
e client might not ever use the system
e auser might point out design flaws the client is not aware of
e users might be external to the company, eg using a website
e practical examples of different roles.
13.2 Student test scores are input into a database as a raw score out of 60 and
as a percentage. Complete Table 1 with appropriate test data.
1 mark for each correct row
Test score
TEST DATA Raw score (percentage)
Normal 0-60 0 to 100
3
Extreme towards 0 OR 60 towards 0 OR 100
<0 OR >60
) . <0 OR >100
Invalid Allow: fractional, ) :
eg 13.2 Allow: Null; error.
Allow: other examples of appropriate data, eg where candidate provides a
context which justifies the data chosen.
14 Explain how the following code could be improved so that it demonstrates
the principles of good programming practice.
1 mark for each point, eg:
e The repeated code is inefficient
e Insert comments 6
e Line 7/8 could be on one line (1 mark), eg: agel = input(hamel+", how old
are you?") (1 mark)
e Create loops (1 mark) with explanation of this (1 mark)
Create player class
e Use arrays rather than variables (1 mark), eg: name(1), name(2)




www.xtrapapers.com

MARK SCHEME - LEVEL 3 TECHNICAL LEVEL IT- F/507/6465 — JANUARY 2018

15.1

Compare the Incremental and V-model software development approaches,

including the advantages and disadvantages of each model.

Indicative content:

Model

Advantages

Disadvantages

Incremental

e Requirements
divided into various
builds; easier to
manage

e Major requirements
of complete system
clearly defined

e Some details can
evolve over time

e Usedtogeta
product to the
market early; or
project with high-risk
objectives

e Series of mini-
waterfalls
(requirements,
design,
implementation,
testing, deployment)

e Each module adds
functionality

e Work incrementally
until each stage fully
finished

o Balance of simplicity
and adaptability

o Generates working
software / business /
customer value early
in software
development life
cycle (SDLC)

e Flexible — less costly
to change scope and
requirements

o Easier to test and
debug during a
smaller iteration;
problems detected
early

e Better use of scarce
resources by
defining increments

e Customer can
respond to each
build - easier to
manage risk / gain
feedback due to
frequent design
cycles

e Lowers initial
delivery cost

e Good for paired
programming

¢ Needs good
planning and design

e Needs heavy
documentation

e Needs
clear/complete
definition of whole
system/processes
before it can be
broken down and
built incrementally

e Total cost is higher
than waterfall

e Level of customer
involvement (can be
adv.)

e Separation of
functions and
features may be
difficult

e Much longer
development time

12

11




www.xtrapapers.com

MARK SCHEME - LEVEL 3 TECHNICAL LEVEL IT- F/507/6465 — JANUARY 2018

Model

Advantages

Disadvantages

V-model

o ‘Verification and
Validation’ model

e Modified waterfall
model with
sequential execution
of processes (V:
requirements, high-
level design, low-
level design —
implementation —
unit, integration,
system testing,
deployment)

e Each phase must be
completed before
next phase begins

e Testing planned in
parallel (developers
v testers life cycle)

e High-level
(architecture/
integration
testing)/low-level
(class diagrams/
component testing)/
implementation
phases

e Used for small to
medium sized
projects where
requirements clearly
defined/fixed/
understood;
technical
resources/expertise
available

e Development and
testing form the ‘two
sides of the V-shape

e Coding at bottom of
V-model

o Ease of use

e Testing activities like
planning, test
designing, happen
before coding: saves
time, develops very
good understanding
of project at initial
stage

e Time management

e Defects found at
early stage, so
cheaper to fix

e Higher chance of
success over
waterfall model

e System test plan
created before
development;
addresses
functionality in
requirements
gathering

¢ Unit testing followed
by integration testing

e Product release and
on-going support (ie
top right of V)

e Very rigid/least
flexible

e Each stage must be
completed before
next stage begins

e Software developed
during
implementation
phase « no early
prototypes; risk of
not meeting client
expectations

o If changes happen
midway,
test/requirements
documents need to
be updated

o Design changes are
expensive as require
reengineering of
tests

e Applicable mostly to
big companies
(resources intensive)

e Can favour
managers and users,
over developers and
designers

12



www.xtrapapers.com

MARK SCHEME - LEVEL 3 TECHNICAL LEVEL IT- F/507/6465 — JANUARY 2018

Award a mark from each levels of response table:

Q15 Descriptor (first component)

e Max. 4 marks if candidate has not compared two models. Marks
e Max. 3 marks if only one approach considered.

Candidate has compared each approach, with clear understanding of 5.6
both.

Candidate has described each approach, with some understanding of 3-4

both; or clear understanding of one approach (max. 3 marks).

Candidate has described each approach with some general
understanding (or compared advantages/disadvantages); or shown 1-2
some understanding of one approach (max. 2 marks).

No creditworthy response. 0

Q15 Descriptor (second component) Marks

Candidate has explained some advantages and disadvantages, or

made a list (5+) which shows clear understanding of both. 56
Candidate has described some advantages and disadvantages, or 3.4
made a list (3+) which shows some understanding of both.

Candidate has listed some advantages or disadvantages, with some 1-2

general understanding.

No creditworthy response. 0

13



MARK SCHEME - LEVEL 3 TECHNICAL LEVEL IT- F/507/6465 — JANUARY 2018

www.xtrapapers.com

15.2

Explain two other software development approaches.

Examples in specification are (3 marks for each explanation):

e Waterfall
e Spiral

o Agile

e |terative
e Modular

Allow other valid approaches.

Indicative content:

step design
(requirements, design,
implementation, testing,
deployment)

e Each phase must be
completed before the
next can begin

e Used for small/medium
projects with clearly
defined requirements
from outset

understand and
use

e Easyto manage —
each phase has
specific
deliverables and
review process

e Phases processed/
completed one at a
time/do not overlap

e Works well for
smaller projects
where
requirements are
very well
understood

Model Advantages Disadvantages
Waterfall
e Alinear model / step-by- | ¢ Simple to e Scope needs to be

clear and detailed
from the outset

e Working software
not given to client
until late in the
SDLC

o Difficulty of
managing team
resources
effectively

¢ Difficult/expensive
to change client
requirements
later/or in testing
phase

14




www.xtrapapers.com

MARK SCHEME - LEVEL 3 TECHNICAL LEVEL IT- F/507/6465 — JANUARY 2018

Modular

e Separates functionality
into interchangeable
modules

e Rules, tools and
methods that together
prescribe how modules
are deployed over time

e Closely related to
structured programming
and object-oriented
programming

e Allows many
programmers to
collaborate/expertise to
be split

o More flexible/scalability,
easier to maintain code /
large programs easier to
design and manage

o Cost-effective; simplified
planning and
engineering,
standardisation

Reuse of code
Scoping of
variables easier
Thorough testing
Organisation of
code; allows library
programs to be
inserted /
programming
codes shortened
Errors
localised/can be
easily identified
Develop and test
functionality
independently

Requires thorough
documentation of
modules
Approach needs to
be agreed across
teams, eg naming
conventions

Iterative

e lteration: steady
refinement of design
based on
testing/evaluation/repeat
ed circle of events

e Delivered first in rough
form, then subject to
user feedback and
testing before final
version

e Part of each iteration
involves studying how
intuitive and efficient (eg
interface) is. Cycle
would then repeat to
refine the previous
delivery until a final
accepted and tested
design

¢ Refine based on user
testing/feedback to
improve usability;
present sketches and
blueprints of product to
users for feedback

Testing/fixing at
each stage instead
of at the end
Acquire
guantitative and
qualitative
feedback, eg to
increase
productivity while
using interface
Build and improve
product step-by-
step

Track defects at
early stages;
avoids downward
flow of the defects
Less time spent on
documenting,
more time for
design

Each phase rigid
with no overlaps
Potential/costly
system architecture
issues because not
all requirements
are gathered up
front for entire
SDLC

15




MARK SCHEME - LEVEL 3 TECHNICAL LEVEL IT- F/507/6465 — JANUARY 2018

www.xtrapapers.com

Agile

Type of incremental
model

People and interactions,
rather than processes
and tools

Allows interaction with
customers, developers,
testers

Small incremental
releases build on
previous functionality
New changes can be
implemented at very
little cost because of
frequency

Easy to roll back and
implement new features
More freedom of options
/ time to
make/manage/postpone
decisions

Regularly adapted to
suit environment/clients’
needs; easy to effect
new features based on
feedback

Software delivered
frequently

Very little planning
required

Realistic client
expectations/on
time/budget
Alerted early to
problems

Rapid, continuous
delivery of useable
software
Continuous
attention to
technical
excellence/quality/
good design
Adapt regularly to
changing
circumstances

Some software
deliverables difficult
to assess for effort
required at the
beginning of the
SDLC

Lack of emphasis
on necessary
design and
documentation
Can get taken off
track if customer
representative not
clear on outcomes
Only senior
programmers
capable of taking
decisions required
during
development
process

Novice
programmers need
paired with
experienced

Spiral

Similar to incremental
For medium to high-risk
projects

More emphasis on risk
analysis/minimisation of
risk

Planning/risk analysis
(prototypes, design),
engineering
(implementation,
testing)/evaluation
(deployment)
Repeats/spirals/multiple-
development phases
Requirements are
complex

Significant changes are
expected (research and
exploration), eg new
product line

High amount of
risk analysis

Good for large and
mission-critical
projects

Strong approval
and documentation
control

Additional
functionality can
be added later
Software is
produced early in
the SDLC

Completed phases
cannot be revisited
easily

Users can be
unsure of needs
Scope for revising/
backtracking
Needs close risk
assessment

Client may have to
spend a lot of time
with development
team

Often no
documentation
Difficult to fix the
start/end of phase
Difficult to commit
long-term because
of potential
changes to
economic priorities

16




www.xtrapapers.com

MARK SCHEME - LEVEL 3 TECHNICAL LEVEL IT- F/507/6465 — JANUARY 2018

Design atest strategy for installing and testing the system. Justify your
choices. For example, you could consider:
e what is critical to success

e different users and audience

e tools and testing techniques

e structure and data

e remedial action.
Q16 Descriptor (first component) Marks
Candidate has carefully designed a clear and viable strategy using the 5.6
bullets provided or sound alternatives
Candidate has designed a strategy which is mostly viable using the

. ; 3-4
bullets provided or sound alternatives
Candidate has attempted a strategy, some of which is viable 1-2
12

No creditworthy response 0
Q16 Descriptor (second component) Marks
Candidate has fully justified their choices in relation to the scenario 5-6
Candidate has made some justification of their choices, some of which 3-4
is focused on the scenario
Candidate has attempted to justify their choices, though in a fairly 1-2
generic way
No creditworthy response 0

17



www.xtrapapers.com

MARK SCHEME - LEVEL 3 TECHNICAL LEVEL IT- F/507/6465 — JANUARY 2018

Assessment Outcomes
Question AO1 AO2 AO3 AO4 QuTeostan
Section A
01 3a (1) 1
02 3e (1) 1
03 3a (1) 1
04 la (1) 1
05 2¢ (1) 1
06 1a (2) >
07.1 3¢ (2) )
07.2 3e (1) 1
08 2d (3) 3
09.1 3a (4) 4
09.2 3a (1) 1
10.1 1c (1) 1
10.2 1b (1) 1
10.3 1b (4) 4
11.1 2d (3) 3
11.2 2d (3) 3
12.1 3a (2) >
12.2 3a (2) )
12.3 3a (3) 3
12.4 3a (1) 1
13.1 2a (3) 3
13.2 3d (3) 3
1 42 (6) 6




Www.xtrapapers.com

MARK SCHEME - LEVEL 3 TECHNICAL LEVEL IT- F/507/6465 — JANUARY 2018

Section B
15.1 2b (12) 12
15.2 2b (6) 6
16 3f (12) 12
Totals 9 31 34 6 80

19





