

1. Nov/2021/Paper_31/No.6

(a) Write the Boolean expression that corresponds to the given truth table as a sum-of-products.

INPUT				OUTPUT
A	B	C	D	Z
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

Z =

..... [3]

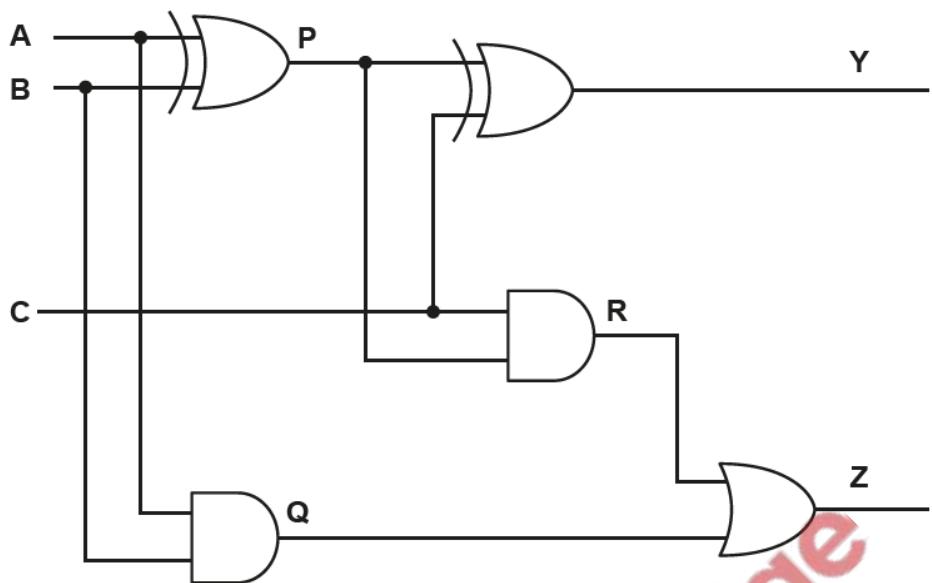
(b) (i) Complete the Karnaugh map (K-map) for the given truth table.

		AB	00	01	11	10
		CD	00			
		00				
		01				
		11				
		10				

[2]

(ii) Draw loop(s) around appropriate group(s) of 1s in the K-map to produce an optimal sum-of-products. [2]

(iii) Write the Boolean expression from your answer to part b(ii) as a simplified sum-of-products.


$Z = \dots$ [2]

(iv) Write the simplified Boolean expression for your answer to part b(iii).

$Z = \dots$ [1]

The diagram shows a logic circuit.

(a) Complete the truth table for the given logic circuit. Show your working.

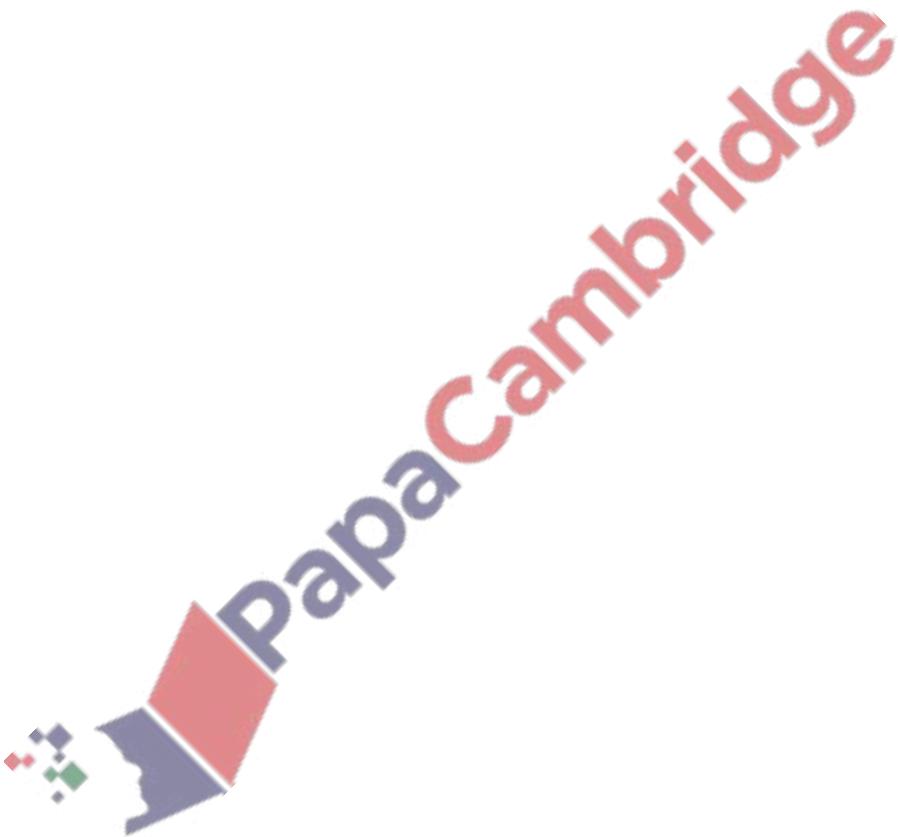
Inputs			Working space			Outputs	
A	B	C	P	Q	R	Y	Z
0	0	0					
0	0	1					
0	1	0					
0	1	1					
1	0	0					
1	0	1					
1	1	0					
1	1	1					

[3]

(b) State the name of the logic circuit.

..... [1]

(c) Write the Boolean expressions for the two outputs Y and Z in the truth table as sum-of-products **and** state the purpose of each output.


$Y =$

Purpose

$Z =$

Purpose

[4]

