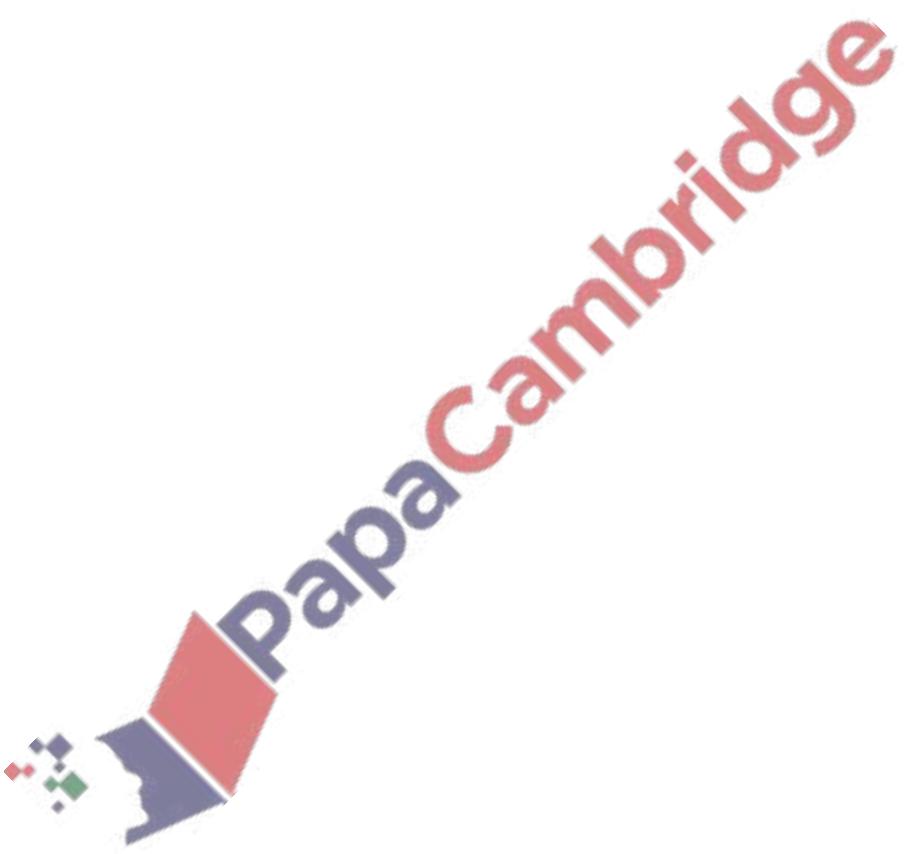


1. Nov/2023/Paper_9709/31/No.2

On an Argand diagram, shade the region whose points represent complex numbers z satisfying the inequalities $|z - 2i| \leq |z + 2 - i|$ and $0 \leq \arg(z + 1) \leq \frac{1}{4}\pi$. [4]

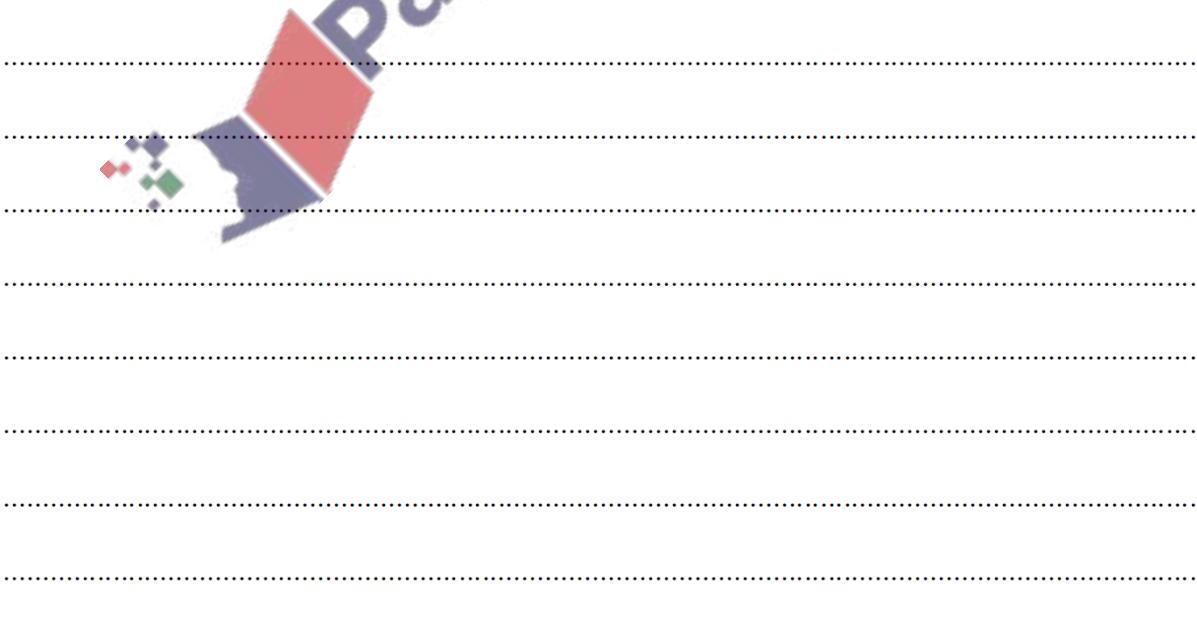


The complex number u is defined by $u = \frac{3+2i}{a-5i}$, where a is real.

(a) Express u in the Cartesian form $x + iy$, where x and y are in terms of a . [3]

Cambridge

(b) Given that $\arg u = \frac{1}{4}\pi$, find the value of a . [2]



(a) On a sketch of an Argand diagram, shade the region whose points represent complex numbers z satisfying the inequalities $|z - 4 - 3i| \leq 2$ and $\operatorname{Re} z \leq 3$. [4]

(b) Find the greatest value of $\arg z$ for points in this region. [2]

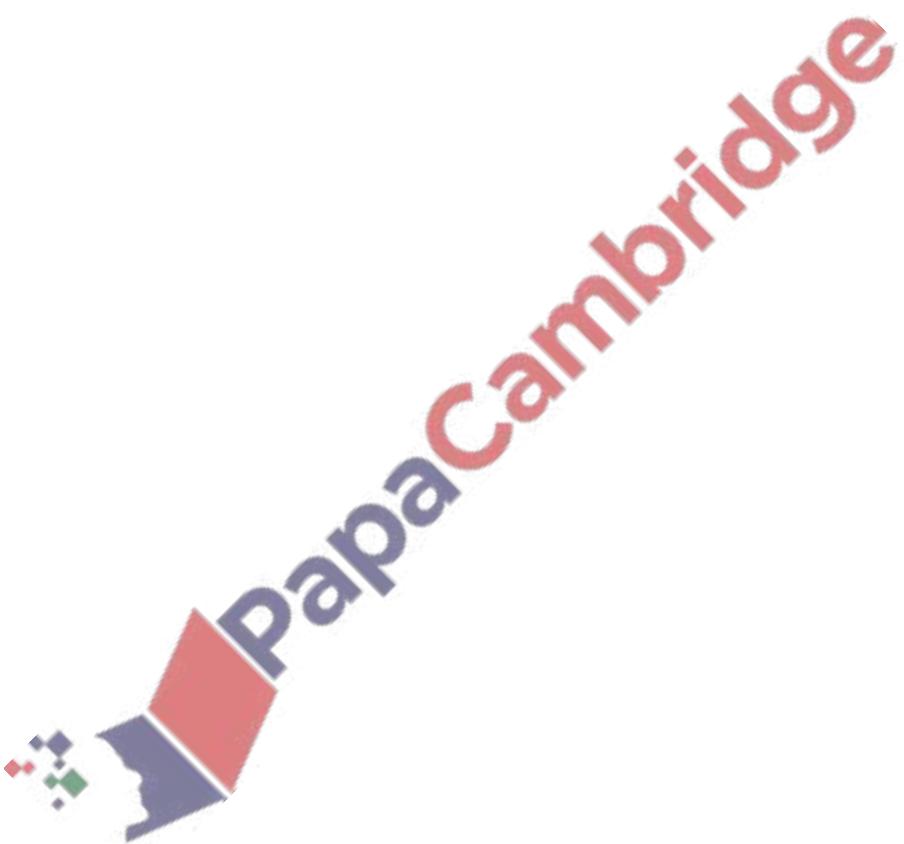
It is given that $\frac{2 + 3ai}{a + 2i} = \lambda(2 - i)$, where a and λ are real constants.

(a) Show that $3a^2 + 4a - 4 = 0$. [4]

(b) Hence find the possible values of a and the corresponding values of λ . [3]

5. Nov/2023/Paper_9709/33/No.2

On an Argand diagram, shade the region whose points represent complex numbers z satisfying the inequalities $|z - 1 + 2i| \leq |z|$ and $|z - 2| \leq 1$. [5]



6. Nov/2023/Paper_9709/33/No.4

Solve the quadratic equation $(3 + i)w^2 - 2w + 3 - i = 0$, giving your answers in the form $x + iy$, where x and y are real. [5]