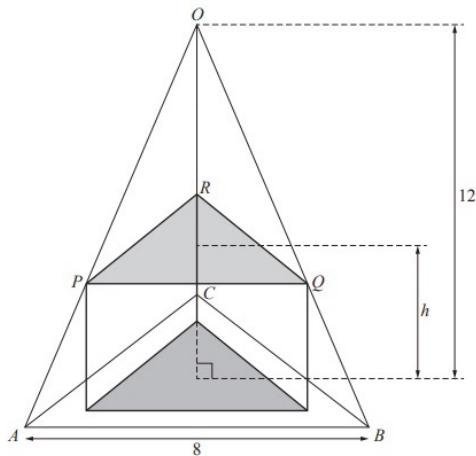


Difficult Questions Explained for Cambridge IGCSE

Additional Mathematics (0606)

1st edition, for examination until 2027

12 In this question all lengths are in centimetres.



The diagram shows a right triangular prism of height h inside a right pyramid. The pyramid has a height of 12 and a base that is an equilateral triangle, ABC , of side 8. The base of the prism sits on the base of the pyramid. Points P , Q and R lie on the edges OA , OB and OC , respectively, of the pyramid $OABC$. Pyramids $OABC$ and $OPQR$ are similar.

(a) Show that the volume, V , of the triangular prism is given by $V = \frac{\sqrt{3}}{9}(ah^3 + bh^2 + ch)$ where a , b and c are integers to be found. [4]

$$\frac{1}{2}(8^2) \times \sin 60^\circ = \text{Area of } ABC$$

$$\text{area of } ABC = 16\sqrt{3}$$

$\frac{12-h}{12}$ - ratio of PQR by PQO length

$$\left(\frac{12-h}{12}\right)^2 - \text{ratio of areas}$$

$$\text{Ratio of Areas} = \frac{144 - 24h + h^2}{144}$$

$$\frac{144 - 24h + h^2}{144} = \frac{\text{Area of PQR}}{\text{Area of ABC} (16\sqrt{3})} \quad \text{Solve for PQR}$$

(b) It is given that, as h varies, V has a maximum value. Find the value of h that gives this maximum value of V . [3]

#1: differentiate the volume equation with respect to h

$$\frac{dV}{dh} = \frac{\sqrt{3}}{9} (3h^2 - 48h + 144) \quad \frac{\sqrt{3}}{9} (6h - 48) \quad \uparrow \text{second derivative}$$

$$\frac{\sqrt{3}}{9} (3h^2 - 48h + 144) = 0$$

$h = 12$ } use 2nd
 $h = 4$ derivative
to find max

↑ Solve this

$$\frac{144 - 24h + h^2}{144} = \frac{x}{16\sqrt{3}}$$

ΔPQR

$$= \frac{\sqrt{3}}{q} (h^2 - 24h + 144)$$

Cross-sectional area
x height (h)

$$\frac{\sqrt{3}}{9} (h^2 - 24h + 144) h$$

$$\frac{\sqrt{3}}{9} (h^3 - 24h^2 + 144h)$$

↑
Final Answer

Maximum!

$$\frac{\sqrt{3}}{9} (6(4) - 48) = \boxed{-\frac{8\sqrt{3}}{3}}$$

$$\frac{\sqrt{3}}{9} (6(12) - 48) = \frac{8\sqrt{3}}{3}$$

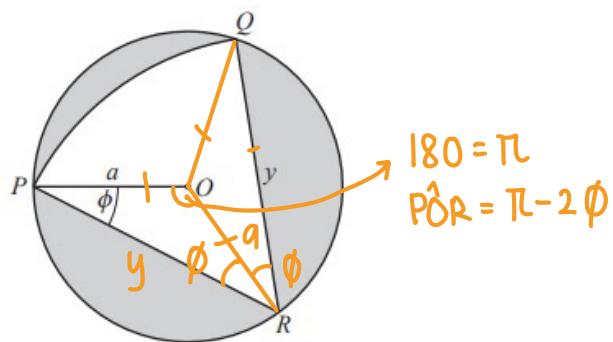
$h = 4$ final answer

9 In this question, all lengths are in centimetres and all angles are in radians.

(b)

Triangle POR is
Congruent to
triangle QOR

$$PRQ = 2\phi$$



The diagram shows a circle with centre O and radius a . Sector PQR is a sector of a different circle with centre R and radius y . Angle OPR is ϕ . Find, in terms of a and ϕ only, the total area of the three shaded regions. Simplify your answer. [4]

$$\frac{1}{2} r^2 \theta \rightarrow \text{Area of Sector}$$

$$\pi r^2 \rightarrow \text{Circle}$$

$$\pi(a)^2 - \frac{1}{2}(y)^2 \geq 0$$

Find y in terms of ϕ

- use cosine / sine rule

COSINE

$$y^2 = a^2 + a^2 - 2a^2 \cos(\pi - 2\phi)$$

Substitute y^2 into $\pi(a)^2 - \frac{1}{2}(y)^2 \neq 0$

$$\pi (a)^2 - \frac{1}{2} (a^2 + a^2 - 2a^2 \cos(\pi - 2\phi)) \uparrow^2 \phi$$

$$\pi a^2 - (2a^2 - 2a^2 \cos(\pi - 2\theta))$$

1

Final answer

SINE

$$\frac{a}{\sin \phi} = \frac{y}{\sin(\pi - 2\phi)}$$

$$\frac{a}{\sin \theta} (\sin(\pi - 2\phi)) = y$$

$$\frac{a \sin(\pi - 2\phi)}{\sin \phi} = y$$

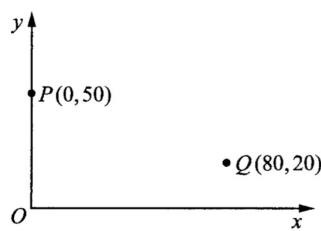
Substitute y into $\pi a^2 - \frac{1}{2}(y)^2 2\phi$

$$\pi a^2 - \frac{1}{2} \left(\frac{a \sin(\pi - 2\phi)}{\sin \phi} \right)^2 2\phi$$

$$\pi a^2 - \frac{a^2 \theta \sin^2(\pi - 2\theta)}{\sin^2 \theta}$$

0606_w02_qp_01

10



At 1200 hours, ship P is at the point with position vector $50\mathbf{j}$ km and ship Q is at the point with position vector $(80\mathbf{i} + 20\mathbf{j})$ km, as shown in the diagram. Ship P is travelling with velocity $(20\mathbf{i} + 10\mathbf{j})$ km h^{-1} and ship Q is travelling with velocity $(-10\mathbf{i} + 30\mathbf{j})$ km h^{-1} .

- (i) Find an expression for the position vector of P and of Q at time t hours after 1200 hours. [3]
- (ii) Use your answers to part (i) to determine the distance apart of P and Q at 1400 hours. [3]
- (iii) Determine, with full working, whether or not P and Q will meet. [2]

$$\text{i. } \mathbf{r}_P = 50\mathbf{j} + t(20\mathbf{i} + 10\mathbf{j})$$

$$\mathbf{r}_Q = 80\mathbf{i} + 20\mathbf{j} + t(-10\mathbf{i} + 30\mathbf{j})$$

$\left. \begin{array}{l} \mathbf{r} = \mathbf{a} + \mathbf{v} \\ \text{where } \mathbf{r} \text{ is the final position vector} \\ \mathbf{a} \text{ is Original position vector} \\ t \text{ is time} \\ \mathbf{v} \text{ is Velocity vector} \end{array} \right\}$

ii. Substitute 2 into t , $1200 \rightarrow 1400$ (2 hours)

$$\begin{aligned} \mathbf{r}_P &= 50\mathbf{j} + 2(20\mathbf{i} + 10\mathbf{j}) \\ &= 40\mathbf{i} + 70\mathbf{j} \end{aligned}$$

$$\begin{aligned} \mathbf{r}_Q &= 80\mathbf{i} + 20\mathbf{j} + 2(-10\mathbf{i} + 30\mathbf{j}) \\ &= 60\mathbf{i} + 80\mathbf{j} \end{aligned}$$

Distance between Q & P so $\mathbf{r}_Q - \mathbf{r}_P$

$$60\mathbf{i} + 80\mathbf{j} - (40\mathbf{i} + 70\mathbf{j})$$

$$= 20\mathbf{i} + 10\mathbf{j}$$

↳ Find magnitude of vector by using Pythagoras

$$\sqrt{20^2 + 10^2}$$

$$= 10\sqrt{5} \rightarrow \text{Final Answer!}$$

iii. When/if P & Q meet, they will be equal to each other

$$50\mathbf{j} + t(20\mathbf{i} + 10\mathbf{j}) = 80\mathbf{i} + 20\mathbf{j} + t(-10\mathbf{i} + 30\mathbf{j})$$

$$50\mathbf{j} + 20t\mathbf{i} + 10t\mathbf{j} = 80\mathbf{i} + 20\mathbf{j} - 10t\mathbf{i} + 30t\mathbf{j}$$

$$20t\mathbf{i} + \mathbf{j}(50 + 10t) = \mathbf{i}(80 - 10t) + \mathbf{j}(20 + 30t)$$

$$\mathbf{i}(50 + 10t) = \mathbf{i}(20 + 30t) \quad 20t\mathbf{i} = 20t\mathbf{i}$$

$$50 + 10t = 20 + 30t$$

$$50 - 20 = 30t - 10t$$

$$20t + 10t = 80$$

$$30t = 80$$

$$t = \frac{8}{3}$$

$$30t = 80$$

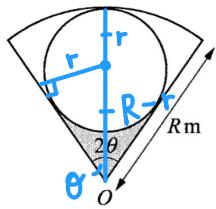
$$\frac{3}{2} = t$$

$\frac{3}{2} \neq \frac{8}{3}$ hence, P and Q don't meet.

0606_w02_qp_01.

12 Answer only **one** of the following two alternatives.

EITHER



The diagram shows a garden in the form of a sector of a circle, centre O , radius R m and angle 2θ . Within this garden a circular plot of the largest possible size is to be planted with roses. Given that the radius of this plot is r m,

(i) show that $R = r \left(1 + \frac{1}{\sin \theta}\right)$. [4]

Given also that $\theta = 30^\circ$,

(ii) calculate the fraction of the garden that is to be planted with roses. [4]

When the circular plot has been constructed, the remainder of the garden consists of three regions. Given further that $R = 15$,

(iii) calculate, to 1 decimal place, the length of fencing required to fence along the perimeter of the shaded region. [3]

ii. Convert $30^\circ \rightarrow$ radians

$$30^\circ \times \frac{\pi}{180} \quad R = r \left(\frac{1}{\sin \frac{\pi}{6}} + 1 \right)$$

$$= \frac{\pi}{6} \quad R = 3r$$

Area of Circle $\cdot \pi r^2$

Area of Sector $: \frac{1}{2} R^2 2\theta$

Substitute

$$R = 3r$$

$$: R^2 \theta$$

$$: (3r)^2 \theta$$

$$: 9r^2 \theta$$

Substitute $\frac{\pi}{6}$

Fraction : $\frac{\text{roses}}{\text{garden}}$

$$= \frac{\pi r^2}{9r^2 \left(\frac{\pi}{6} \right)}$$

$$= \frac{\pi^2}{9} = \frac{2}{3}$$

Final Answer.

i. $\sin \theta = \frac{r}{R-r}$

$$R-r = \frac{r}{\sin \theta}$$

$$R = \frac{r}{\sin \theta} + r$$

$$R = r \left(\frac{1}{\sin \theta} + 1 \right)$$

iii. $R = 3r$

$$15 = 3r$$

$$\frac{15}{3} = r$$

$$5 = r$$

Finding y :

$$Z = \pi - \theta - \frac{\pi}{2}$$

$$= \pi - \frac{\pi}{6} - \frac{\pi}{2}$$

$$= \frac{\pi}{3}$$

$$2z = \frac{2}{3}\pi$$

$$y = 5 \times \frac{2\pi}{3}$$

$$y = \frac{10\pi}{3}$$

$$\tan \theta = \frac{r}{x}$$

$$\tan \left(\frac{\pi}{6} \right) = \frac{5}{x}$$

$$\frac{5}{\tan \left(\frac{\pi}{6} \right)} = x$$

$$x = 5\sqrt{3}$$

Perimeter: Add all the sides

$$5\sqrt{3} + 5\sqrt{3} + \frac{10\pi}{3}$$

$$= 27.79$$

1 decimal place!

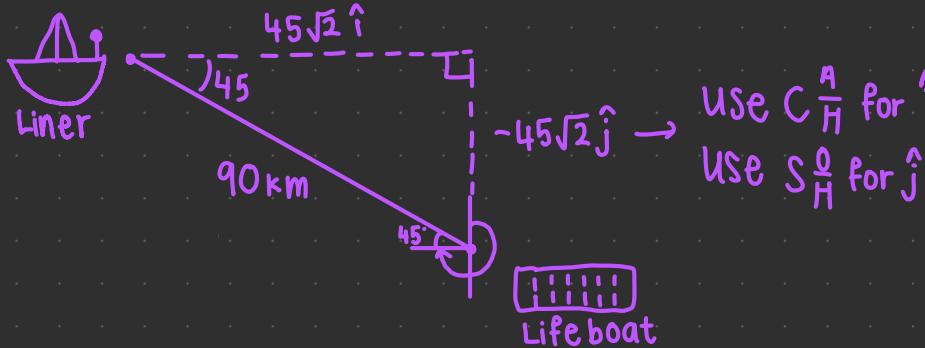
$$27.8 \text{ m}$$

↑
don't forget the unit m

0606_s03_qp_01

4 An ocean liner is travelling at 36 km h^{-1} on a bearing of 090° . At 0600 hours the liner, which is 90 km from a lifeboat and on a bearing of 315° from the lifeboat, sends a message for assistance. The lifeboat sets off immediately and travels in a straight line at constant speed, intercepting the liner at 0730 hours. Find the speed at which the lifeboat travels. [5]

$t = 1.5$
 $6:00 \rightarrow 7:30$
1.5 hours!



Final position vector

$r = a + tv$
where r is the final position vector
 a is original position vector
 t is time
 v is velocity vector

Let original Liner Position = 0,0 Life boat original position : $45\sqrt{2}\hat{i} - 45\sqrt{2}\hat{j}$

$$R_{\text{Liner}} = 36t\hat{i} \quad t = 1.5$$

$$= 36(1.5)\hat{i}$$

$$= 54\hat{i} + 0\hat{j}$$

$$R_{\text{Lifeboat}} = (45\sqrt{2}\hat{i} - 45\sqrt{2}\hat{j}) + 1.5(x\hat{i} + y\hat{j})$$

$$= 45\sqrt{2}\hat{i} - 45\sqrt{2}\hat{j} + 1.5x\hat{i} + 1.5y\hat{j}$$

$$= \hat{i}(45\sqrt{2} + 1.5x) + \hat{j}(1.5y - 45\sqrt{2})$$

For Liner \rightarrow Lifeboat to meet
the $R_{\text{Liner}} = R_{\text{Lifeboat}}$

$$54\hat{i} + 0\hat{j} = \hat{i}(45\sqrt{2} + 1.5x) + \hat{j}(1.5y - 45\sqrt{2})$$

$$54 = 45\sqrt{2} + 1.5x \quad 0 = 1.5y - 45\sqrt{2}$$

$$54 - 45\sqrt{2} = 1.5x \quad 45\sqrt{2} = 1.5y$$

$$\frac{54 - 45\sqrt{2}}{1.5} = x \quad \frac{45\sqrt{2}}{1.5} = y$$

$$x = 36 - 30\sqrt{2} \quad y = 30\sqrt{2}$$

This is velocity vector,
to convert to speed, use
Pythagoras theorem.

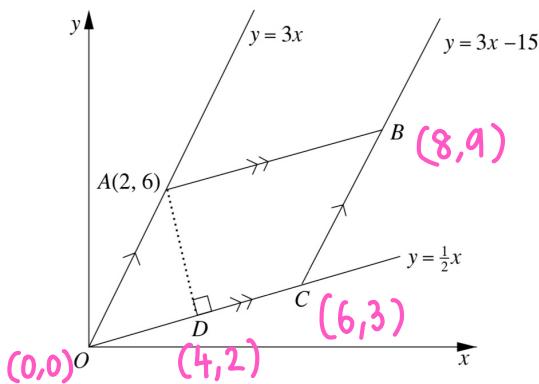
$$\sqrt{(36 - 30\sqrt{2})^2 + (30\sqrt{2})^2}$$

$$= 42.9 \text{ km/h}$$

↑ this is the final Answer!

0606_w03_qp_01

11 Solutions to this question by accurate drawing will not be accepted.



The diagram, which is not drawn to scale, shows a parallelogram $OABC$ where O is the origin and A is the point $(2, 6)$. The equations of OA , OC and CB are $y = 3x$, $y = \frac{1}{2}x$ and $y = 3x - 15$ respectively. The perpendicular from A to OC meets OC at the point D . Find

(i) the coordinates of C , B and D , [8]
(ii) the perimeter of the parallelogram $OABC$, correct to 1 decimal place. [3]

$$\text{ii. } AO + AB + BC + CO$$

$$AO = BC$$

$$AB = CO$$

$$2AO + 2CO$$

$$AO = \sqrt{6^2 + 2^2} \quad (\text{Pythagoras})$$

$$AO = 2\sqrt{10}$$

$$CO = \sqrt{6^2 + 3^2}$$

$$CO = 3\sqrt{5}$$

$$\begin{aligned} \text{Perimeter} &= 2(2\sqrt{10}) + 2(3\sqrt{5}) \\ &= 4\sqrt{10} + 6\sqrt{5} \\ &= 26.1 \text{ units} \end{aligned}$$

i. C : the point where line $y = 3x - 15$ & $y = \frac{1}{2}x$ intersect
 $C : 3x - 15 = \frac{1}{2}x$

B. the line B is on is parallel to $y = \frac{1}{2}x$, hence they have same gradient ($\frac{1}{2}$)

D: Perpendicular to $y = \frac{1}{2}x$, Find line equation for AD.

$$3x - \frac{1}{2}x = 15$$

$$\frac{5}{2}x = 15$$

$$x = 15 \div \frac{5}{2}$$

$$x = 6$$

* After x is found Substitute the value into either equations ($3x - 15 = y$ or $\frac{1}{2}x = y$) to find y coordinate.

$$y = \frac{1}{2}x$$

$$= \frac{1}{2}(6)$$

$$y = 3 \#$$

$$C : (6, 3)$$

use A cords to find line equation.

$$y = \frac{1}{2}x + c \quad \text{Line equation}$$

$$A : (2, 6)$$

$$6 = \frac{1}{2}(2) + c \quad \text{for AB} =$$

$$6 = 1 + c \quad y = \frac{1}{2}x + 5$$

$$6 - \frac{1}{2}(2) = c \quad \text{Let AB line equation equal}$$

$$c = 5 \quad \text{to } y = 3x - 15$$

Because B is where $y = \frac{1}{2}x + 5$ & $y = 3x - 15$ intersect.

$$B : \frac{1}{2}x + 5 = 3x - 15$$

$$5 + 15 = 3x - \frac{1}{2}x$$

$$20 = \frac{5}{2}x$$

$$20 \div \frac{5}{2} = x$$

$$x = 8$$

$$y = \frac{1}{2}(8) + 5$$

$$y = 9$$

$$B : (8, 9) \#$$

$$y = mx + c$$

$$m_{\frac{1}{2}} - m_{\frac{1}{2}} = -\frac{1}{2} = -2$$

$$y = 2x + c$$

* Substitute A cords

$$6 = -2(2) + c$$

$$6 + 4 = c$$

$$c = 10$$

$$y = -2x + 10$$

let $-2x + 10$ equal to $\frac{1}{2}x$, intersection of those lines is point D.

$$-2x + 10 = \frac{1}{2}x$$

$$10 = \frac{1}{2}x + 2x$$

$$10 = \frac{5}{2}x$$

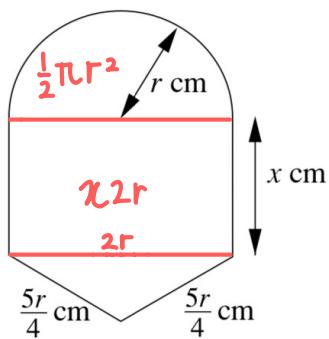
$$4 = x \quad D : (4, 2)$$

$$y = \frac{1}{2}(4) \quad y = 2 \#$$

0606_w03_qp_01

12 Answer only **one** of the following two alternatives.

EITHER



A piece of wire, 125 cm long, is bent to form the shape shown in the diagram. This shape encloses a plane region, of area A cm^2 , consisting of a semi-circle of radius r cm, a rectangle of length x cm and an isosceles triangle having two equal sides of length $\frac{5r}{4}$ cm.

(i) Express x in terms of r and hence show that $A = 125r - \frac{\pi r^2}{2} - \frac{7r^2}{4}$. [6]

Given that r can vary,

(ii) calculate, to 1 decimal place, the value of r for which A has a maximum value. [4]

$$\begin{aligned} i. \quad \pi r + 2x + \frac{5r}{2} &= 125 \\ 2x &= 125 - \frac{5r}{2} - \pi r \\ x &= \frac{125}{2} - \frac{5r}{4} - \frac{\pi r}{2} \end{aligned}$$

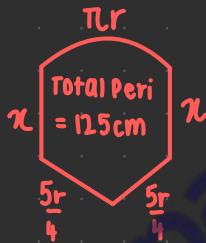
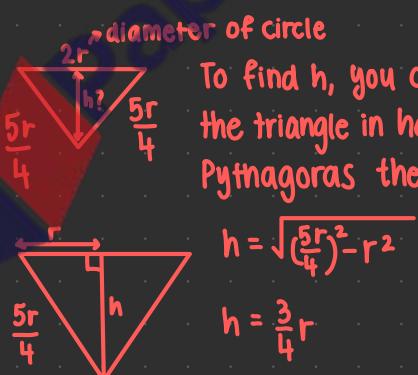
$$A = \frac{1}{2}\pi r^2 + \text{rectangle} + \frac{3}{4}r^2$$

rectangle
Semicircle
triangle

$$\begin{aligned} \text{Substitute} \\ 2x &= 125 - \frac{5r}{2} - \pi r \\ \text{into rectangle area} \end{aligned}$$

$$\begin{aligned} A &= \frac{1}{2}\pi r^2 + (125 - \frac{5r}{2} - \pi r)r + \frac{3}{4}r^2 \\ &= \frac{1}{2}\pi r^2 + 125r - \frac{5r^2}{2} - \pi r^2 + \frac{3}{4}r^2 \\ A &= 125r - \frac{\pi r^2}{2} - \frac{7}{4}r^2 \end{aligned}$$

Hence, Shown. \uparrow Final Answer!



$$\begin{aligned} \text{Area of triangle} &: \frac{1}{2}bh \\ &= \frac{1}{2}(2r)(\frac{3r}{4}) \\ &= \frac{3}{4}r^2 \end{aligned}$$

ii. Differentiate the Area equation with respect to r

$$\frac{dA}{dr} = 125 - \pi r - \frac{7}{2}r$$

To find the maximum, let

$$\frac{dA}{dr} = 0 :$$

$$125 - \pi r - \frac{7}{2}r = 0$$

$$125 = \pi r + \frac{7}{2}r$$

$$125 = r(\pi + \frac{7}{2})$$

$$\frac{125}{\pi + \frac{7}{2}} = r$$

$$r = 18.8 \text{ cm}$$

\uparrow Final Answer!

0606_s04_qp_01

8 A curve has the equation $y = (ax + 3) \ln x$, where $x > 0$ and a is a positive constant. The normal to the curve at the point where the curve crosses the x -axis is parallel to the line $5y + x = 2$.
Find the value of a . [7]

$$5y + x = 2$$

$$y = -\frac{1}{5}x + \frac{2}{5}$$

$$m_1 = -\frac{1}{5}$$

Line is perpendicular to normal
gradient of tangent = $-\frac{1}{m_1}$

$$m_2 = 5$$

$$y = (ax + 3) \ln x$$

Crosses x -axis, $y = 0$

$0 = (ax + 3) \ln x$ gradient at tangent is parallel, so you can
 $\ln x = 0$ equate them to each other : $a + 3 = 5$

$$x = e^0$$

$$x = 1$$

to find gradient equation at $x=1$:

$$y = (ax + 3) \ln x$$

$$u \quad v$$

$$u' = a \quad v' = \frac{1}{x}$$

$$\frac{dy}{dx} \Big|_{x=1} = (ax + 3) \times \frac{1}{x} + a \times \ln x$$

$$\frac{dy}{dx} \Big|_{x=1} = \frac{ax + 3}{x} + a \ln x$$

$$= \frac{a(1) + 3}{(1)} + a \ln(1)$$

$$= a + 3 + a \ln(e^0)$$

$$= a + 3$$

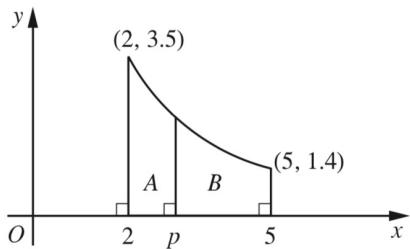
↳ gradient at $x=1$

$$a + 3 = 5$$

$$a = 5 - 3$$

$$\boxed{a = 2 \#}$$

↑ Final answer!



The diagram shows part of a curve, passing through the points $(2, 3.5)$ and $(5, 1.4)$. The gradient of the curve at any point (x, y) is $-\frac{a}{x^3}$, where a is a positive constant.

(i) Show that $a = 20$ and obtain the equation of the curve. [5]

The diagram also shows lines perpendicular to the x -axis at $x = 2$, $x = p$ and $x = 5$. Given that the areas of the regions A and B are equal,

(ii) find the value of p . [5]

i. gradient equal is differentiated version of y

So, integrate $-\frac{a}{x^3}$ to find what the equation of the line is

$$\frac{dy}{dx} = -\frac{a}{x^3}$$

$$y = \frac{a}{2x^2} + C$$

Substitute 2 points $(2, 3.5)$ & $(5, 1.4)$ to find C

$$-① 3.5 = \frac{a}{2(2)^2} + C \quad -② 1.4 = \frac{a}{2(5)^2} + C$$

$$3.5 = \frac{a}{8} + C$$

$$3.5(8) = a + 8C$$

$$28 = a + 8C$$

$$a + 8C = 28$$

$$- a + 50C = 70$$

$$-42C = -42$$

$$C = 1 \#$$

$$28 = a + 8(1)$$

$$28 - 8 = a$$

$$a = 20 \#$$

$$y = \frac{20}{2x^2} + 1$$

$$y = \frac{10}{x^2} + 1$$

ii. Integrate $y = \frac{10}{x^2} + 1$

then use $p-2$ & $5-p$ as limits to find the value of p

$$\int_2^p (10x^{-2} + 1) dx = \int_p^5 (10x^{-2} + 1) dx$$

$$\left[-\frac{10}{x} + x \right]_2^p = \left[-\frac{10}{x} + x \right]_p^5$$

$$-\frac{10}{p} + p - \left(-\frac{10}{2} + 2 \right) = -2 + 5 - \left(-\frac{10}{p} + p \right)$$

$$-\frac{10}{p} + p + 5 - 2 = -2 + 5 + \frac{10}{p} - p$$

$$\frac{p^2 - 10}{p} \cancel{+ 3} = 3 + \frac{10 - p^2}{p}$$

$$p^2 - 10 = 10 - p^2$$

$$p^2 + p^2 = 10 + 10$$

$$2p^2 = 20$$

$$p^2 = 10$$

$$p = \sqrt{10} \#$$

Final Answer!

Final Answer!

0606_w04_qp_01

11 The line $4y = 3x + 1$ intersects the curve $xy = 28x - 27y$ at the point $P(1, 1)$ and at the point Q . The perpendicular bisector of PQ intersects the line $y = 4x$ at the point R . Calculate the area of triangle PQR . [9]

$$4y = 3x + 1$$

$$x = \frac{4y-1}{3} \rightarrow \text{Substitute into } xy = 28x - 27y$$

$$\left(\frac{4y-1}{3}\right)y = 28\left(\frac{4y-1}{3}\right) - 27y$$

$$\frac{4y^2 - y}{3} = \frac{112y - 28}{3} - 27y$$

$$\frac{4y^2 - y}{3} - \frac{112y - 28}{3} = -27y$$

$$\frac{4y^2 - y - 112y + 28}{3} = -27y$$

$$4y^2 - 113y + 28 = -27y \quad (3)$$

$$4y^2 - 113y + 81y + 28 = 0$$

$$4y^2 - 32y + 28 = 0$$

$$y_1 = 7 \quad y_2 = 1$$

$$x = \frac{4y-1}{3}$$

$$x_1 = 9 \quad x_2 = 1$$

$$P(1, 1) \quad Q = (9, 7)$$

To Find the perpendicular bisector
- Find gradient ∇ midpoint

$$m_1 = \frac{3}{4} \rightsquigarrow m_2 = -\frac{4}{3}$$

$$\text{Midpoint} = (5, 4)$$

$$y = mx + c$$

$$m = -\frac{4}{3}$$

$$(5, 4)$$

$$4 = \left(-\frac{4}{3}\right)(5) + c$$

$$4 = -\frac{20}{3} + c$$

$$4 + \frac{20}{3} = c$$

$$c = \frac{32}{3}$$

$$y = -\frac{4}{3}x + \frac{32}{3}$$

$$3y = -4x + 32$$

$$3y + 4x = 32$$

$$y = 4x$$

$$3(4x) + 4x = 32$$

$$12x + 4x = 32$$

$$16x = 32$$

$$x = 2$$

$$y = 4(2)$$

$$y = 8$$

To Find the Area, Use the Shoelace method:

$$P(1, 1) \quad Q(9, 7) \quad R(2, 8)$$

$$\text{Area} = \frac{1}{2} \left| 1 \times 7 + 9 \times 8 - 7 \times 1 - 9 \times 8 \right|$$

$$\text{Area} = \frac{1}{2} \left| 7 + 72 + 2 - 9 - 14 - 8 \right|$$

$$\text{Area} = \frac{1}{2} \left| 50 \right|$$

$$\text{Area} = 25 \text{ units}^2$$

0606_w04_qp_01

12 Answer only **one** of the following two alternatives.

EITHER

(a) At the beginning of 1960, the number of animals of a certain species was estimated at 20 000. This number decreased so that, after a period of n years, the population was

$$20000e^{-0.05n}.$$

Estimate

(i) the population at the beginning of 1970, [1]
(ii) the year in which the population would be expected to have first decreased to 2000. [3]

(b) Solve the equation $3^{x+1} - 2 = 8 \times 3^{x-1}$. [6]

i. $20000e^{-0.05(10)} = 12130$ because $1970 - 1960 = 10$ year difference.

ii. $20000e^{-0.05n} = 2000$

$$e^{-0.05n} = \frac{2000}{20000}$$

$$e^{-0.05n} = \frac{1}{10}$$

$$-0.05n = \ln\left(\frac{1}{10}\right)$$

$$n = \frac{(\ln \frac{1}{10})}{-0.05}$$

$$n = 46.1 \text{ years}$$

$$n = 47 \text{ years - rounded up!}$$

$$1960 + 47 = 2007$$

Final answer!

(b) Let $3^x = y$

$$(3^x)(3^1) - 2 = 8 \times \frac{(3^x)}{(3^1)}$$
$$3y - 2 = 8 \times \frac{1}{3}y$$

$$3y - 2 = \frac{8}{3}y$$

$$-2 = \frac{8}{3}y - 3y$$

$$-2 = \frac{1}{3}y$$

$$2 = \frac{1}{3}y$$

$$2 \div \frac{1}{3} = y$$

$$y = 6$$

$$3^x = 6$$

$$\log_3(6) = x$$

index \rightarrow log form

0606_s05_qp_01

A piece of wire, of length 2 m, is divided into two pieces. One piece is bent to form a square of side x m and the other is bent to form a circle of radius r m.

(i) Express r in terms of x and show that the total area, A m², of the two shapes is given by

$$A = \frac{(\pi + 4)x^2 - 4x + 1}{\pi}. \quad [4]$$

Given that x can vary, find

(ii) the stationary value of A , [4]
 (iii) the nature of this stationary value. [2]

Find the perimeter \nexists equal it to the Length

$$\boxed{2\pi r} + \boxed{4x} = 2$$

Circle Square

$$2\pi r = 2 - 4x$$

$$r = \frac{2 - 4x}{2\pi} \text{ (simplify)}$$

$$r = \frac{1 - 2x}{\pi}$$

Area Formula :

$$\boxed{\pi r^2} + \boxed{x^2}$$

circle square

$$- \text{Substitute } (r = \frac{1 - 2x}{\pi})$$

$$\pi \left(\frac{1 - 2x}{\pi} \right)^2 + x^2$$

$$\pi \left(\frac{(1 - 2x)(1 - 2x)}{\pi^2} \right) + x^2$$

$$\pi \left(\frac{1 + 4x + 4x^2}{\pi^2} \right) + x^2$$

$$\left[\frac{1 + 4x + 4x^2}{\pi} + x^2 \right] \text{ make denominator same}$$

$$\frac{1 + 4x + 4x^2}{\pi} + \frac{x^2 \pi}{\pi} \quad \frac{1 + 4x + (4 + \pi)x^2}{\pi} \#$$

$$\frac{1 + 4x + 4x^2 + x^2 \pi}{\pi}$$

ii. Differentiate A and equal it to 0.

$$\frac{dA}{dx} = \frac{(\pi + 4)x^2 - 4x + 1}{\pi}$$

$$\frac{dA}{dx} = \frac{2(\pi + 4)x - 4}{\pi}$$

$$\frac{2(\pi + 4)x - 4}{\pi} = 0$$

$$2(\pi + 4)x - 4 = 0$$

$$2(\pi + 4)x = 4$$

$$2(\pi + 4)x = 4$$

$$x = \frac{4}{2\pi + 8}$$

$$x = \frac{2}{\pi + 4}$$

Substitute into A .

$$A = \frac{(x + 4)x^2 - 4x + 1}{\pi}$$

$$A = \frac{\left(\left(\frac{2}{\pi + 4} \right) + 4 \right) \left(\frac{2}{\pi + 4} \right)^2 - 4 \left(\frac{2}{\pi + 4} \right) + 1}{\pi}$$

$$A = 0.14$$

$$\text{iii) find } \frac{d^2A}{dx^2}$$

$$\frac{2(\pi + 4)x - 4}{\pi}$$

$$\frac{d^2A}{dx^2} = \frac{2\pi + 8}{\pi}$$

$\frac{2\pi + 8}{\pi} > 0$, hence
 minimum point

0606_w05_qp_01

5 The diagram, which is not drawn to scale, shows a horizontal rectangular surface. One corner of the surface is taken as the origin O and \mathbf{i} and \mathbf{j} are unit vectors along the edges of the surface.

A fly, F , starts at the point with position vector $(\mathbf{i} + 12\mathbf{j})$ cm and crawls across the surface with a velocity of $(3\mathbf{i} + 2\mathbf{j})$ cm s $^{-1}$. At the instant that the fly starts crawling, a spider, S , at the point with position vector $(85\mathbf{i} + 5\mathbf{j})$ cm, sets off across the surface with a velocity of $(-5\mathbf{i} + k\mathbf{j})$ cm s $^{-1}$, where k is a constant. Given that the spider catches the fly, calculate the value of k . [6]

Find Position Vector of $F \nparallel S$:

$$R_F = (\hat{i} + 12\hat{j}) + t(3\hat{i} + 2\hat{j})$$

$$R_F = \hat{i} + 12\hat{j} + 3t\hat{i} + 2t\hat{j}$$

$$R_F = (3t + 1)\hat{i} + (12 + 2t)\hat{j}$$

$$R_S = (85\hat{i} + 5\hat{j}) + t(-5\hat{i} + k\hat{j})$$

$$R_S = 85\hat{i} + 5\hat{j} + -5t\hat{i} + kt\hat{j}$$

$$R_F = R_S, \text{ Solve for } k$$

$$3t + 1 = 85 - 5t \quad 5 + kt = 12 + 2t$$

$$3t + 5t = 85 - 1 \quad kt - 2t = 12 - 5$$

$$8t = 84 \quad k(10.5) - 2(10.5) = 7$$

$$t = \frac{84}{8} \quad 10.5k - 21 = 7$$

$$t = 10.5 \quad k = \frac{7 + 21}{10.5}$$

$$k = 2\frac{2}{3} \# \text{ Final Answer!}$$

0606_w05_qp_01

9 (a) Find all the angles between 0° and 360° which satisfy the equation

$$3 \cos x = 8 \tan x.$$

[5]

(b) Given that $4 \leq y \leq 6$, find the value of y for which

$$2 \cos\left(\frac{2y}{3}\right) + \sqrt{3} = 0. \quad [3]$$

$$(a) 3 \cos x = 8 \tan x$$

$$3 \cos x = 8 \left(\frac{\sin x}{\cos x} \right)$$

$$3 \cos^2 x = 8 \sin x$$

↑
identities

$$3(1 - \sin^2 x) = 8 \sin x$$

$$3 \sin^2 x + 8 \sin x - 3 = 0$$

$$\sin x = \frac{1}{3}$$

$$x = \sin^{-1}\left(\frac{1}{3}\right)$$

$$x_1 = 19.47$$

$$x_2 = 180 - (19.47)$$

$$x_2 = 160.52$$

$$2 \cos\left(\frac{2y}{3}\right) + \sqrt{3} = 0$$

$$2 \cos\left(\frac{2y}{3}\right) = -\sqrt{3}$$

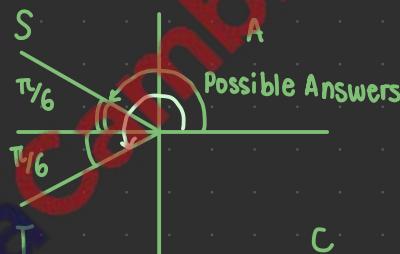
$$\cos\left(\frac{2y}{3}\right) = -\frac{\sqrt{3}}{2}$$

Basic angle:

$$= \cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)$$

$$= \frac{\pi}{6}$$

$$\cos\left(\frac{2y}{3}\right) = -\frac{\sqrt{3}}{2} \quad \therefore S, T \text{ quadrants}$$



$$\frac{2y}{3} = 5\pi/6$$

$$y = \frac{5\pi}{6} \div \frac{2}{3}$$

$$y = \frac{5}{4}\pi \quad [\text{REJECT}]$$

$$4 \leq y \leq 6$$

$$\frac{2y}{3} = 7\pi/6$$

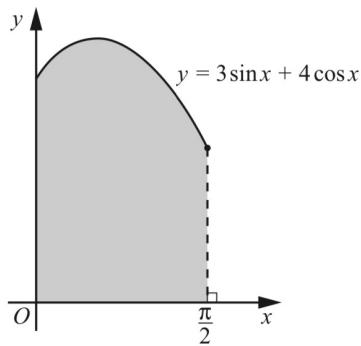
$$y = \frac{7\pi}{6} \div \frac{2}{3}$$

$$y = \frac{7\pi}{4} \quad \text{or} \quad 5.5$$

0606_s07_qp_01

11 Answer only **one** of the following two alternatives.

EITHER



The graph shows part of the curve $y = 3\sin x + 4\cos x$ for $0 \leq x \leq \frac{\pi}{2}$ radians.

(i) Find the coordinates of the maximum point of the curve.

[5]

(ii) Find the area of the shaded region.

[5]

i. Differentiate the y equation and let it equal to 0.

$$\frac{dy}{dx} = 3\cos x - 4\sin x$$

$$3\cos x - 4\sin x = 0$$

$$3\cos x = 4\sin x$$

$$\frac{3}{4} = \frac{\sin x}{\cos x}$$

$$\frac{3}{4} = \tan x$$

$$x = \tan^{-1}\left(\frac{3}{4}\right)$$

$$x = 0.644$$

$$y = 3\sin x + 4\cos x$$

$$y = 3\sin(0.644) + 4\cos(0.644)$$

$$y = 4.99$$

$$y = 5.00$$

$$\text{maximum coordinate} = (0.644, 5.00)$$

ii. Integrate y equation with limits 0 to $\frac{\pi}{2}$

$$\int_0^{\frac{\pi}{2}} 3\sin x + 4\cos x \, dx$$

$$= \left[-3\cos x + 4\sin x \right]_0^{\frac{\pi}{2}}$$

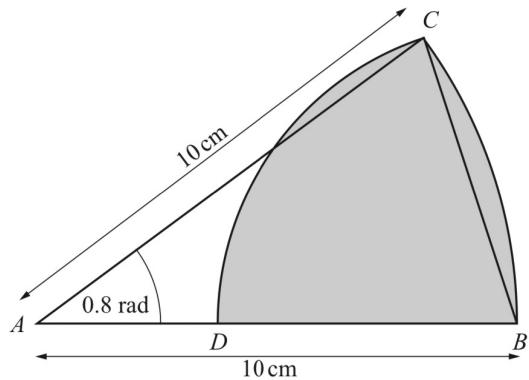
$$= \left(-3\cos\left(\frac{\pi}{2}\right) + 4\sin\left(\frac{\pi}{2}\right) \right) - \left(-3\cos(0) + 4\sin(0) \right)$$

$$= (0 + 4) - (-3 + 0)$$

$$= 4 + 3$$

$$= 7 \text{ units}^2$$

↑ Final Answer!



The diagram shows a sector ABC of the circle, centre A and radius 10 cm, in which angle $BAC = 0.8$ radians. The arc CD of a circle has centre B and the point D lies on AB .

- (i) Show that the length of the straight line BC is 7.79 cm, correct to 2 decimal places. [2]
- (ii) Find the perimeter of the shaded region. [4]
- (iii) Find the area of the shaded region. [4]

i. Use the Cosine rule to find BC .

$$BC^2 = AB^2 + AC^2 - 2ABAC \cos(A)$$

$$BC = \sqrt{AB^2 + AC^2 - 2ABAC \cos(A)}$$

$$BC = \sqrt{(10)^2 + (10)^2 - 2(10 \times 10) \cos(0.8)}$$

[Solve in calculator in RADIANT MODE]

$$= \sqrt{100 + 100 - 200 \cos(0.8)}$$

$$= 7.7883$$

$$= 7.79$$

iii. Area =

Sector DBC + (Sector CAB - triangle CAB)

$$\text{Sector } DBC = \frac{1}{2}r^2\theta = \frac{1}{2}(7.79)^2(1.17)$$

$$= 35.50$$

$$\text{Sector } CAB = \frac{1}{2}r^2\theta = \frac{1}{2}(10)^2(0.8)$$

$$= 40$$

$$\text{Triangle } CAB = \frac{1}{2}r^2 \sin \theta = \frac{1}{2}(10)^2 \sin 0.8$$

$$= 35.87$$

$$\text{Area} = 35.50 + (40 - 35.87)$$

$$= 39.6 \text{ unit}^2$$

ii. Find arc length BC

$$BC = r\theta$$

$$= 10(0.8)$$

$$= 8$$

$BD = BC$ - radius of circle Centre point B

$$BD = 7.79$$

$$DC = r\theta$$

$$r = 7.79$$

to find θ use Sine rule!

$$\frac{\sin A}{a} = \frac{\sin \theta}{b} \quad \frac{\sin 0.8}{7.79} = \frac{\sin \theta}{10}$$

$$10 \left(\frac{\sin 0.8}{7.79} \right) = \sin \theta \quad \sin^{-1} \left(10 \left(\frac{\sin 0.8}{7.79} \right) \right) = \theta$$

$$\theta = 1.17 \text{ rad.}$$

$$DC = r\theta$$

$$= (7.79)(1.17)$$

$$= 9.11$$

$$\text{Perimeter} = BC + DB + DC$$

$$= 8 + 7.79 + 9.11$$

$$= 24.9$$

0606_s08_qp_01

10 In this question, \mathbf{i} is a unit vector due east and \mathbf{j} is a unit vector due north.

At 0900 hours a ship sails from the point P with position vector $(2\mathbf{i} + 3\mathbf{j})$ km relative to an origin O . The ship sails north-east with a speed of $15\sqrt{2}$ km h^{-1} .

(i) Find, in terms of \mathbf{i} and \mathbf{j} , the velocity of the ship. [2]

(ii) Show that the ship will be at the point with position vector $(24.5\mathbf{i} + 25.5\mathbf{j})$ km at 1030 hours. [1]

(iii) Find, in terms of \mathbf{i} , \mathbf{j} and t , the position of the ship t hours after leaving P . [2]

At the same time as the ship leaves P , a submarine leaves the point Q with position vector $(47\mathbf{i} - 27\mathbf{j})$ km. The submarine proceeds with a speed of 25 km h^{-1} due north to meet the ship.

(iv) Find, in terms of \mathbf{i} and \mathbf{j} , the velocity of the ship relative to the submarine. [2]

(v) Find the position vector of the point where the submarine meets the ship. [2]

i.

$$\hat{\mathbf{i}} = \cos\left(\frac{\pi}{4}\right) \hat{\mathbf{A}} = \frac{\hat{\mathbf{i}}}{15\sqrt{2}}$$

$$\hat{\mathbf{j}} = \sin\left(\frac{\pi}{4}\right) \hat{\mathbf{A}} = \frac{\hat{\mathbf{j}}}{15\sqrt{2}}$$

$$\hat{\mathbf{i}} = 15$$

$$\hat{\mathbf{j}} = 15$$

$$\vec{v} = 15\hat{\mathbf{i}} + 15\hat{\mathbf{j}}$$

ii. Position Vector $= \mathbf{a} + t\mathbf{v}$

$$\mathbf{r} = \mathbf{a} + t\mathbf{v}$$

$$\mathbf{r} = (2\hat{\mathbf{i}} + 3\hat{\mathbf{j}}) + (1.5)(15\hat{\mathbf{i}} + 15\hat{\mathbf{j}})$$

$$\mathbf{r} = (2\hat{\mathbf{i}} + 3\hat{\mathbf{j}}) + (22.5\hat{\mathbf{i}} + 22.5\hat{\mathbf{j}})$$

$$\mathbf{r} = 24.5\hat{\mathbf{i}} + 25.5\hat{\mathbf{j}}$$

iii. Position Vector $= \mathbf{a} + t\mathbf{v}$

$$\mathbf{r} = \mathbf{a} + t\mathbf{v}$$

$$\mathbf{r} = (2\hat{\mathbf{i}} + 3\hat{\mathbf{j}}) + (t)(15\hat{\mathbf{i}} + 15\hat{\mathbf{j}})$$

IV.

$$\vec{v}_{\text{sub}} = 25\hat{\mathbf{j}}$$

$$\vec{v}_{\text{ship}} = 15\hat{\mathbf{i}} + 15\hat{\mathbf{j}}$$

Relative velocity $= \vec{v}_{\text{ship}} - \vec{v}_{\text{sub}}$

$$= 15\hat{\mathbf{i}} + 15\hat{\mathbf{j}} - 25\hat{\mathbf{j}}$$

$$= 15\hat{\mathbf{i}} - 10\hat{\mathbf{j}}$$

$$\hat{\mathbf{j}} = 25$$

$$\vec{v}_{\text{sub}}$$

V. Let the position vector of ship & submarine equal to each other.

$$\mathbf{r}_{\text{ship}} = (2\hat{\mathbf{i}} + 3\hat{\mathbf{j}}) + (t)(15\hat{\mathbf{i}} + 15\hat{\mathbf{j}})$$

$$\mathbf{r}_{\text{sub}} = \mathbf{a} + t\mathbf{v}$$

$$= (47\hat{\mathbf{i}} - 27\hat{\mathbf{j}}) + t(25\hat{\mathbf{j}})$$

$$2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 15\hat{\mathbf{i}}t + 15\hat{\mathbf{j}}t = 47\hat{\mathbf{i}} - 27\hat{\mathbf{j}} + 25\hat{\mathbf{j}}t$$

$$(2 + 15t)\hat{\mathbf{i}} + (3 + 15t)\hat{\mathbf{j}} = 47\hat{\mathbf{i}} + (25t - 27)\hat{\mathbf{j}}$$

$$2 + 15t = 47$$

$$15t = 47 - 2$$

$$15t = 45$$

$$t = \frac{45}{15}$$

$$t = 3$$

Substitute into position vector of either ship or submarine.

$$\mathbf{R} = (47\hat{\mathbf{i}} - 27\hat{\mathbf{j}}) + 3(25\hat{\mathbf{j}})$$

$$= (47\hat{\mathbf{i}} - 27\hat{\mathbf{j}}) + 75\hat{\mathbf{j}}$$

$$= 47\hat{\mathbf{i}} + 48\hat{\mathbf{j}}$$

0606_s08_qp_01

12 OR

A particle moves in a straight line such that its displacement, s m, from a fixed point O at a time t s, is given by

$$s = \ln(t+1) \quad \text{for } 0 \leq t \leq 3,$$

$$s = \frac{1}{2}\ln(t-2) - \ln(t+1) + \ln 16 \quad \text{for } t > 3.$$

Find

- (i) the initial velocity of the particle, [2]
- (ii) the velocity of the particle when $t = 4$, [2]
- (iii) the acceleration of the particle when $t = 4$, [2]
- (iv) the value of t when the particle is instantaneously at rest, [2]
- (v) the distance travelled by the particle in the 4th second. [2]

i. Differentiate $S = \ln(t+1)$ and let $t = 0$

$$\begin{aligned} \frac{ds}{dt} &= \frac{1}{t+1} \\ &= \frac{1}{0+1} \\ &= 1 \text{ m/s} \end{aligned}$$

ii. Differentiate $S = \frac{1}{2}\ln(t-2) - \ln(t+1) + \ln 16$
and let $t = 4$

$$\frac{ds}{dt} = \frac{1}{2} \left(\frac{1}{t-2} \right) - \left(\frac{1}{t+1} \right)$$

$$\frac{ds}{dt} = \frac{1}{2t-4} - \frac{1}{t+1}$$

Substitute $t = 4$

$$\frac{1}{2(4)-4} - \frac{1}{4+1} = \frac{1}{20}$$

iii.

$$V = \frac{1}{2t-4} - \frac{1}{t+1}$$

$$\frac{dv}{dt} = -1(2t-4)^{-2} \times 2 - (-1(t+1)^{-2})$$

$$\frac{dv}{dt} = -2(2t-4)^{-2} + 1(t+1)^{-2}$$

$\frac{dv}{dt}$ = acceleration

$$= -2(2(4)-4)^{-2} + 1(4+1)^{-2}$$

$$= -\frac{17}{200}$$

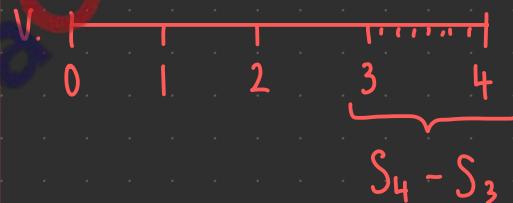
IV. $\frac{1}{2t-4} - \frac{1}{t+1} = 0$

$$\frac{1}{2t-4} = \frac{1}{t+1}$$

$$t+1 = 2t-4$$

$$2t-t = 1+4$$

$$t = 5$$



$$S_3 = \ln(3+1) \quad S_3 = \ln(4)$$

$$S_4 = \frac{1}{2}\ln(4-2) - \ln(4+1) + \ln 16$$

$$S_4 = \frac{1}{2}\ln(2) - \ln(5) + \ln 16$$

$$S_4 = \ln \sqrt{2} - \ln 5 + \ln 16$$

$$S_4 = \ln \frac{\sqrt{2}}{5} \times 16$$

$$S_4 = \ln \frac{16\sqrt{2}}{5}$$

$$S_4 - S_3, \quad \ln \frac{16\sqrt{2}}{5} - \ln 4$$

$$= \ln \left(\frac{16\sqrt{2}}{5} \div 4 \right)$$

$$- \ln \frac{4\sqrt{2}}{5}$$

0606_w08_qp_01

8 A curve is such that $\frac{d^2y}{dx^2} = 4e^{-2x}$. Given that $\frac{dy}{dx} = 3$ when $x = 0$ and that the curve passes through the point $(2, e^{-4})$, find the equation of the curve. [6]

#1: integrate $\frac{d^2y}{dx^2}$ to find $\frac{dy}{dx}$

$$\int 4e^{-2x} dx = -2e^{-2x} + C \rightarrow \frac{dy}{dx}$$

$$-2e^{-2(0)} + C = 3$$

(Substitute $x=0$ & $\frac{dy}{dx}=3$)

$$C = 3 + 2e^{-2(0)}$$

$$C = 5$$

$$\int -2e^{-2x} + 5 dx$$

$$= e^{-2x} + 5x + C e^{-4}$$

$$y = e^{-2x} + 5x + C$$

$$y = e^{-2x} + 5x + C$$

(Substitute $(2, e^{-4})$)

$$e^{-4} = e^{-2(2)} + 5(2) + C$$

$$e^{-4} - (e^{-2(2)} + 10) = C$$

$$-10 = C$$

$$y = e^{-2x} + 5x - 10 \#$$

Final Answer!!

12 Answer only **one** of the following two alternatives.

EITHER

A curve has equation $y = \frac{x^2}{x+1}$.

(i) Find the coordinates of the stationary points of the curve.

[5]

The normal to the curve at the point where $x = 1$ meets the x -axis at M . The tangent to the curve at the point where $x = -2$ meets the y -axis at N .

(ii) Find the area of the triangle MNO , where O is the origin.

[6]

(i) Stationary point: $\frac{dy}{dx} = 0$

$$\frac{x^2}{x+1} \quad u = x^2 \quad v = x+1$$

$$u' = 2x \quad v' = 1$$

$$\frac{vu' - uv'}{v^2} = \frac{(x+1)(2x) - (x^2)(1)}{(x+1)(x+1)}$$

$$= \frac{2x^2 + 2x - x^2}{x^2 + 2x + 1}$$

$$\frac{dy}{dx} = \frac{x^2 + 2x}{x^2 + 2x + 1}$$

$$0 = \frac{x^2 + 2x}{x^2 + 2x + 1}$$

$$x^2 + 2x = 0$$

$$x = -2, x = 0$$

$$y = 0 \quad y = -4$$

Substitute into curve equation for y

(0, 0) (0, 0)

(-2, -4) (-2, -4)

Final Answer!!

(ii) Find coordinate M :

$$\text{at } x = 1, y = \frac{1}{2}$$

$$\frac{dy}{dx} \text{ where } x = 1$$

$$= \frac{3}{4}$$

$$\text{gradient} = -\frac{4}{3}$$

$$y - \frac{1}{2} = -\frac{4}{3}(x - 1)$$

$$y = -\frac{4}{3}x + \frac{11}{6}$$

at x axis so $y = 0$

$$0 = -\frac{4}{3}x + \frac{11}{6} \quad x = \frac{11}{8} \quad M: \left(\frac{11}{8}, 0\right)$$

Find coordinate of N :

$$x = -2, y = -4$$

$$\frac{dy}{dx} \text{ where } x = -2$$

$$\text{gradient} = 0, \quad y = -4$$

at y axis so $x = 0 \quad N: (0, -4)$

Shoelace method:

ΔMNO

$$M: \left(\frac{11}{8}, 0\right)$$

$$N: (0, -4)$$

$$O: (0, 0)$$

$$M: \left(\frac{11}{8}, 0\right)$$

$$A = \frac{1}{2} \left| \frac{11}{8} \ 0 \ 0 \ \frac{11}{8} \right|$$

$$= \frac{1}{2} \left| \left(\frac{11}{8} \times -4\right) \right|$$

$$= \frac{1}{2} \left| -\frac{11}{2} \right|$$

$$= \frac{1}{2} \left(\frac{11}{2} \right)$$

$$\text{Area} = \frac{11}{4} \text{ unit}^2$$

0606_s09_qp_01

9 At 10 00 hours, a ship P leaves a point A with position vector $(-4\mathbf{i} + 8\mathbf{j})$ km relative to an origin O , where \mathbf{i} is a unit vector due East and \mathbf{j} is a unit vector due North. The ship sails north-east with a speed of $10\sqrt{2}$ km h^{-1} . Find

(i) the velocity vector of P , [2]
 (ii) the position vector of P at 12 00 hours. [2]

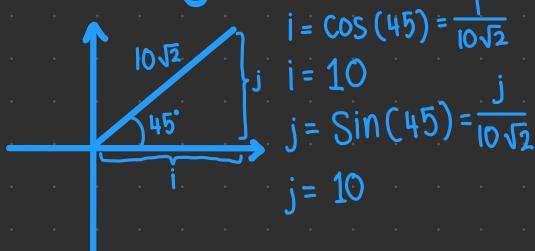
At 12 00 hours, a second ship Q leaves a point B with position vector $(19\mathbf{i} + 34\mathbf{j})$ km travelling with velocity vector $(8\mathbf{i} + 6\mathbf{j})$ km h^{-1} .

(iii) Find the velocity of P relative to Q . [REMOVED] [2]
 (iv) Hence, or otherwise, find the time at which P and Q meet and the position vector of the point where this happens. [3]

(i) Speed: $10\sqrt{2}$

North East

Velocity vector:



Velocity vector = $10\mathbf{i} + 10\mathbf{j}$

(ii) Position vector

$$\mathbf{R} = \mathbf{a} + t\mathbf{v}$$

$$\mathbf{a} : -4\mathbf{i} + 8\mathbf{j}$$

$$t : 10.00 \rightarrow 12.00$$

(2 hours)

$$\mathbf{v} : 10\mathbf{i} + 10\mathbf{j}$$

$$\mathbf{R} = -4\mathbf{i} + 8\mathbf{j} + 2(10\mathbf{i} + 10\mathbf{j})$$

$$= -4\mathbf{i} + 8\mathbf{j} + 20\mathbf{i} + 20\mathbf{j}$$

$$= 16\mathbf{i} + 28\mathbf{j}$$

$$(iv) \mathbf{r} = \mathbf{a} + t\mathbf{v}$$

$$\mathbf{P}: \text{at } 12:00 \quad \mathbf{Q}: \text{at } 12:00$$

$$: 16\mathbf{i} + 28\mathbf{j} \quad : 19\mathbf{i} + 34\mathbf{j}$$

$$\mathbf{a} + t\mathbf{v} = \mathbf{a} + t\mathbf{v}$$

$$16\mathbf{i} + 28\mathbf{j} + t(10\mathbf{i} + 10\mathbf{j}) = 19\mathbf{i} + 34\mathbf{j} + t(8\mathbf{i} + 6\mathbf{j})$$

$$16\mathbf{i} + 28\mathbf{j} + 10t\mathbf{i} + 10t\mathbf{j} = 19\mathbf{i} + 8t\mathbf{i} + 34\mathbf{j} + 6t\mathbf{j}$$

$$(16 + 10t)\mathbf{i} + (28 + 10t)\mathbf{j} = (19 + 8t)\mathbf{i} + (34 + 6t)\mathbf{j}$$

$$16 + 10t = 19 + 8t \quad 28 + 10t = 34 + 6t$$

$$10t - 8t = 19 - 16$$

$$t = \frac{3}{2}$$

$$10t - 6t = 34 - 28$$

$$t = \frac{6}{4} \quad t = \frac{3}{2}$$

$$\frac{3}{2} = 1.5 \text{ h} \quad 12:00 + 1.5 = 13:30$$

$$\mathbf{r} = \mathbf{a} + t\mathbf{v}$$

$$\mathbf{r} = (19\mathbf{i} + 34\mathbf{j}) + \frac{3}{2}(8\mathbf{i} + 6\mathbf{j})$$

$$\mathbf{r} = 19\mathbf{i} + 34\mathbf{j} + 12\mathbf{i} + 9\mathbf{j}$$

$$\mathbf{r} = 31\mathbf{i} + 43\mathbf{j}$$

Position Vector = $31\mathbf{i} + 43\mathbf{j}$

Time of meet = 13:30

Final Answer!!

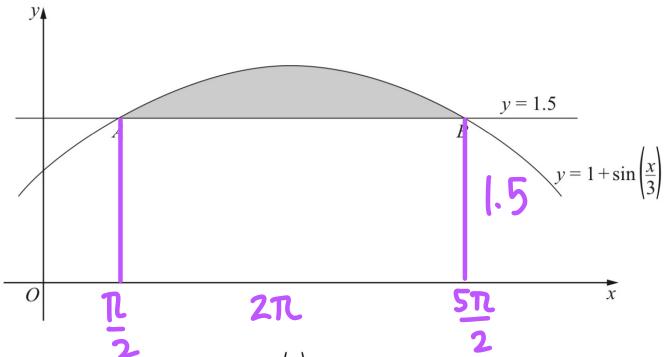
0606_s09_qp_01

12 Answer only **one** of the following two alternatives.

EITHER

(i) State the amplitude of $1 + \sin\left(\frac{x}{3}\right)$. [1]

(ii) State, in radians, the period of $1 + \sin\left(\frac{x}{3}\right)$. [1]



The diagram shows the curve $y = 1 + \sin\left(\frac{x}{3}\right)$ meeting the line $y = 1.5$ at points A and B . Find

(iii) the x -coordinate of A and of B ,

(iv) the area of the shaded region.

[3]

[6]

i. $y = a \sin bx + c$
where a = amplitude

So amplitude = 1

ii. Period = $\frac{2\pi}{b} = \frac{2\pi}{\frac{1}{3}}$

Period = 6π

iv) integrate $1 + \sin\left(\frac{x}{3}\right)$ with
A \leq B as limits to find
area under the graph:

$$\int_{\frac{\pi}{2}}^{\frac{5\pi}{2}} 1 + \sin\left(\frac{x}{3}\right) dx$$

$$\left[x - 3 \cos\left(\frac{x}{3}\right) \right]_{\frac{\pi}{2}}^{\frac{5\pi}{2}}$$

$$\left[x - 3 \cos\left(\frac{x}{3}\right) \right]_{\frac{\pi}{2}}^{\frac{5\pi}{2}}$$

$$\frac{5\pi}{2} - 3 \cos \frac{5\pi}{2} - \left(\frac{\pi}{2} - 3 \cos \frac{\pi}{2} \right)$$

$$= 2\pi + 3\sqrt{3}$$

minus Area of rectangle ($2\pi \times 1.5$)

$$= 2\pi + 3\sqrt{3} - 3\pi$$

$$= 3\sqrt{3} - \pi$$

Final Answer!!

ii. Let $y = 1 + \sin\left(\frac{x}{3}\right)$ equal to $y = 1.5$

$$1 + \sin\left(\frac{x}{3}\right) = 1.5$$

$$\sin\left(\frac{x}{3}\right) = 1.5 - 1$$

$$\frac{x}{3} = \sin^{-1}(0.5)$$

$$\frac{x}{3} = \frac{\pi}{6} \quad \frac{x}{3} = \frac{5\pi}{6}$$

$$x = 3\left(\frac{\pi}{6}\right) \quad x = 3\left(\frac{5\pi}{6}\right)$$

$$x = \frac{3\pi}{6} \quad x = \frac{15\pi}{6}$$

$$x = \frac{\pi}{2} \quad x = \frac{5\pi}{2}$$

$$A = \frac{\pi}{2}$$

$$B = \frac{5\pi}{2}$$

Final Answer!!

11 (a) Show that $\tan\theta + \cot\theta = \operatorname{cosec}\theta \sec\theta$.

[3]

(b) Solve the equation

(i) $\tan x = 3 \sin x$ for $0^\circ < x < 360^\circ$,

[4]

(ii) $2\cot^2 y + 3\operatorname{cosec} y = 0$ for $0 < y < 2\pi$ radians.

[5]

(a) $\tan\theta + \cot\theta$

$$\begin{aligned}\tan\theta + \frac{1}{\tan\theta} \\ = \frac{\tan^2\theta + 1}{\tan\theta}\end{aligned}$$

$$\frac{\sec^2\theta}{\tan\theta}$$

$$= \frac{1}{\cos^2\theta} \div \frac{\sin\theta}{\cos\theta}$$

$$= \frac{1}{\cos\theta \sin\theta}$$

$$\operatorname{cosec}\theta \sec\theta = \text{RHS!}$$

(b) $\tan x = 3 \sin x$

$$\frac{\sin x}{\cos x} = 3 \sin x$$

$$\frac{\sin x}{\cos x} - 3 \sin x = 0$$

$$\sin\left(\frac{1}{\cos x} - 3\right) = 0$$

$$\sin x = 0$$

$$\frac{1}{\cos x} - 3 = 0$$

$$x = \sin^{-1}(0)$$

$$\cos x = \frac{1}{3}$$

$$x = 0, 180, 360$$

$$x = \cos^{-1}\left(\frac{1}{3}\right)$$

$$x = 180^\circ$$

$$x = 70.5^\circ$$

$$x = 360 - 70.5^\circ$$

$$x = 70.5^\circ, 289.5^\circ$$

$$x = 70.5, 180, 289.5$$

↑ Final Answer !!

iii.) $2\cot^2 y + 3\operatorname{cosec} y = 0$

$$2(\operatorname{cosec}^2 y - 1) + 3\operatorname{cosec} y = 0$$

$$2\operatorname{cosec}^2 y - 2 + 3\operatorname{cosec} y = 0$$

$$2\operatorname{cosec}^2 y + 3\operatorname{cosec} y - 2 = 0$$

Let $\operatorname{cosec} y = x$

$$2x^2 + 3x - 2 = 0$$

$$x = \frac{1}{2} \quad x = -2$$

$$\operatorname{cosec} y = \frac{1}{2} \quad \operatorname{cosec} y = -2$$

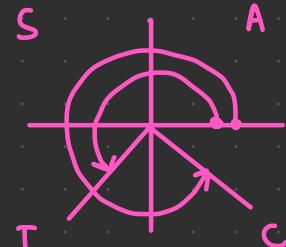
$$\frac{1}{\sin y} = \frac{1}{2}$$

$$\frac{1}{\sin y} = -2$$

$$\sin y = 2$$

$$\sin y = -\frac{1}{2}$$

[REJECT]



$$y = \sin^{-1}\left(-\frac{1}{2}\right)$$

$$y = \pi + \frac{\pi}{6}, 2\pi - \frac{\pi}{6}$$

$$y = \frac{7\pi}{6}, \frac{11\pi}{6}$$

↑ Final Answer !!

0606_s10_qp_11

11 Answer only **one** of the following two alternatives.

EITHER

A curve has equation $y = \frac{\ln x}{x^2}$, where $x > 0$.

(i) Find the exact coordinates of the stationary point of the curve. [6]

(ii) Show that $\frac{d^2y}{dx^2}$ can be written in the form $\frac{a \ln x + b}{x^4}$, where a and b are integers. [3]

(iii) Hence, or otherwise, determine the nature of the stationary point of the curve. [2]

i) $\frac{dy}{dx} = 0 \quad \frac{VU' - UV'}{V^2} = 0$ $\ln x = \frac{-x}{2x}$

$\frac{\ln x}{x^2} \quad \frac{x^2(\frac{1}{x}) - \ln x(2x)}{(x^2)^2} = 0$ $\ln x = \frac{1}{2}$ Coordinate: $(e^{\frac{1}{2}}, \frac{1}{2e})$

$U = \ln x$ $x = e^{\frac{1}{2}}$ Final Answer!!

$U' = \frac{1}{x}$ $x^2(\frac{1}{x}) - \ln x(2x) = 0$ $y = \frac{\ln(e^{\frac{1}{2}})}{(e^{\frac{1}{2}})^2}$

$V = x^2$ $x - 2x \ln x = 0$

$V' = 2x$ $-2x \ln x = -x$ $y = \frac{1}{2e}$

ii.) $= \frac{x^2(\frac{1}{x}) - \ln x(2x)}{(x^2)^2} = \frac{x - 2x \ln x}{x^4} = \frac{x(1 - 2 \ln x)}{x^4} = \frac{1 - 2 \ln x}{x^3}$

$\frac{d}{dx} \left(\frac{1 - 2 \ln x}{x^3} \right) = \frac{VU' - UV'}{V^2} = \frac{x^3(-\frac{2}{x}) - 1 - 2 \ln x(3x^2)}{(x^3)^2}$

$= \frac{-2x^2 - 3x^2(1 - 2 \ln x)}{x^6} = \frac{x^2(-2 - 3(1 - 2 \ln x))}{x^6} = \frac{2 + 3 + 6 \ln x}{x^4} = \frac{6 \ln x + 5}{x^4}$

↑ Final Answer!!

iii. $\frac{d^2y}{dx^2} > 0$ minimum

$\frac{d^2y}{dx^2} < 0$ maximum

$$\frac{6 \ln x + 5}{x^4} = 0$$

$$6 \ln x + 5 = 0$$

$$6 \ln x = -5$$

$$\ln x = -\frac{5}{6}$$

$$x = e^{-\frac{5}{6}}$$

$e^{-\frac{5}{6}} < 0$, maximum point!

0606_s10_qp_11

OR

A curve is such that $\frac{dy}{dx} = 6 \cos\left(2x + \frac{\pi}{2}\right)$ for $-\frac{\pi}{4} \leq x \leq \frac{5\pi}{4}$. The curve passes through the point $(\frac{\pi}{4}, 5)$.

Find

- (i) the equation of the curve, [4]
- (ii) the x -coordinates of the stationary points of the curve, [3]
- (iii) the equation of the normal to the curve at the point on the curve where $x = \frac{3\pi}{4}$. [4]

[NEXT PAGE]

i.) integrate $\frac{dy}{dx}$ to

find curve equation

$$\int 6 \cos\left(2x + \frac{\pi}{2}\right) dx$$

$$y = \frac{6 \sin\left(2x + \frac{\pi}{2}\right)}{2} + C$$

$$y = 3 \sin\left(2x + \frac{\pi}{2}\right) + C$$

[Substitute $(\frac{\pi}{4}, 5)$]

$$5 = 3 \sin\left(2\left(\frac{\pi}{4}\right) + \frac{\pi}{2}\right) + C$$

$$5 - 3 \sin\left(2\left(\frac{\pi}{4}\right) + \frac{\pi}{2}\right) = C$$

$$C = 5$$

$$y = 3 \sin\left(2x + \frac{\pi}{2}\right) + 5 \#$$

↑ Final Answer!!

ii.) $\frac{dy}{dx} = 0$

$$6 \cos\left(2x + \frac{\pi}{2}\right) = 0$$

$$\cos\left(2x + \frac{\pi}{2}\right) = 0$$

$$\left(2x + \frac{\pi}{2}\right) = \cos^{-1}(0)$$

$$\cos^{-1}(0) = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}$$

$$2x + \frac{\pi}{2} = \frac{\pi}{2}$$

$$2x = 0$$

$$x = 0$$

$$2x + \frac{\pi}{2} = \frac{3\pi}{2}$$

$$2x = \frac{3\pi}{2} - \frac{\pi}{2}$$

$$x = \frac{\pi}{2}$$

$$2x + \frac{\pi}{2} = \frac{5\pi}{2}$$

$$2x = \frac{5\pi}{2} - \frac{\pi}{2}$$

$$x = \pi$$

0606_s10_qp_11

(iii) the equation of the normal to the curve at the point on the curve where $x = \frac{3\pi}{4}$.

[4]

iii) Find gradient at $x = \frac{3\pi}{4}$ by substituting into $\frac{dy}{dx}$

$$6 \cos\left(2\left(\frac{3\pi}{4}\right) + \frac{\pi}{2}\right) = 6$$

$m_1 = 6 \rightarrow$ Gradient of tangent

gradient of normal = $-\frac{1}{m_1}$

$$m_2 = -\frac{1}{6}$$

$$y = -\frac{1}{6}x + C$$

To get a set of coordinates, substitute $x = \frac{3\pi}{4}$ into curve equation.

$$y = 3 \sin\left(2\left(\frac{3\pi}{4}\right) + \frac{\pi}{2}\right) + 5$$

$$y = 5$$

$$y = -\frac{1}{6}x + C \quad \left(\frac{3\pi}{4}, 5\right)$$

$$5 = -\frac{1}{6}\left(\frac{3\pi}{4}\right) + C$$

$$5 + \frac{1}{6}\left(\frac{3\pi}{4}\right) = C$$

$$C = 5 + \frac{\pi}{8}$$

$$y = -\frac{1}{6}x + 5 + \frac{\pi}{8}$$

↑ Final Answer!!

0606_s10_qp_12

11 A particle moves in a straight line such that its displacement, x m, from a fixed point O on the line at time t seconds is given by $x = 12\{\ln(2t+3)\}$. Find

- (i) the value of t when the displacement of the particle from O is 48 m, [3]
- (ii) the velocity of the particle when $t = 1$, [3]
- (iii) the acceleration of the particle when $t = 1$. [3]

i.) $48 = x$

Solve for t

$$48 = 12 \ln(2t+3)$$

$$\frac{48}{12} = \ln(2t+3)$$

$$e^4 = 2t+3$$

$$e^4 - 3 = 2t$$

$$t = \frac{e^4 - 3}{2}$$

Final Answer!!

ii.) $\frac{dx}{dt}$ and let $t = 1$

$$12 \left(\frac{2}{2t+3} \right) \text{ and let } t = 1$$

$$12 \left(\frac{2}{2+3} \right) = 12 \left(\frac{2}{5} \right)$$

$$= \frac{24}{5} \text{ m/s}$$

Final Answer!!

ii.) $\frac{d^2x}{dt^2}$ and let $t = 1$

$$12 \left(\frac{2}{2t+3} \right)$$

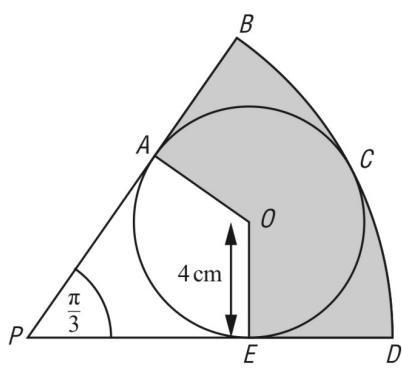
$$\frac{d}{dt} \left(\frac{24}{2t+3} \right) = 24(2t+3)^{-2}$$

$$-24(2t+3)^{-2} (2)$$

$$= -48(2t+3)^{-2}$$

Final Answer!!

$$= -\frac{48}{25} \text{ m/s}^2$$



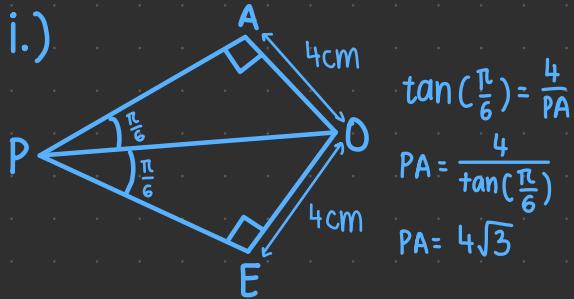
The diagram shows a circle, centre O , radius 4 cm, enclosed within a sector $PBCDP$ of a circle, centre P . The circle centre O touches the sector at points A , C and E . Angle BPD is $\frac{\pi}{3}$ radians.

(i) Show that $PA = 4\sqrt{3}$ cm and $PB = 12$ cm. [2]

Find, to 1 decimal place,

(ii) the area of the shaded region, [4]

(iii) the perimeter of the shaded region. [4]



$$PB = PC \quad \text{4, radius}$$

$$PC = PO + OC$$

$$\sin\left(\frac{\pi}{6}\right) = \frac{4}{PO}$$

$$PO = \frac{4}{\sin\left(\frac{\pi}{6}\right)}$$

$$PO = 8 \text{ cm}$$

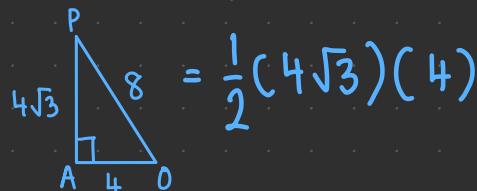
$$PB = 4 \text{ cm} + 8 \text{ cm}$$

$$= 12 \text{ cm}$$

ii.) Area of Sector BPD - 2 triangles

$$\begin{aligned} \text{Area of sector} &= \frac{1}{2} r^2 \theta \\ &= \frac{1}{2} (12)^2 \left(\frac{\pi}{3}\right) \\ &= 24\pi \end{aligned}$$

$$\text{Area of triangle} = \frac{1}{2} bh$$



$$= 8\sqrt{3}$$

$$24\pi - 2(8\sqrt{3}) = 47.69 \text{ cm}^2$$

Final Answer!!

$$\begin{aligned} \text{iii.)} \quad & 4 + 4 + 2(12 - 4\sqrt{3}) + 4\pi \\ & 8 + 24 - 8\sqrt{3} + 4\pi \\ & = 30.7 \text{ cm} \end{aligned}$$

$$12\left(\frac{\pi}{3}\right) = 4\pi$$

Final Answer!!

$\triangle POA \cong \triangle POE$

0606_w10_qp_11

11 (i) Find $\int \frac{1}{\sqrt{1+x}} dx$. [2]

(ii) Given that $y = \frac{2x}{\sqrt{1+x}}$, show that $\frac{dy}{dx} = \frac{A}{\sqrt{1+x}} + \frac{Bx}{(\sqrt{1+x})^3}$, where A and B are to be found. [4]

(iii) Hence find $\int \frac{x}{(\sqrt{1+x})^3} dx$ and evaluate $\int_0^3 \frac{x}{(\sqrt{1+x})^3} dx$. [4]

i.) $\int \frac{1}{\sqrt{1+x}} dx$
 $\int 1 (1+x)^{-\frac{1}{2}} dx$

$$= 2(1+x)^{\frac{1}{2}} + C$$

↖ Final Answer!!

ii.) $\frac{d}{dx} \left(\frac{2x}{\sqrt{1+x}} \right)$
 $2x(1+x)^{-\frac{1}{2}}$

$U = 2x$

$U' = 2$

$V = (1+x)^{-\frac{1}{2}}$

$V' = -\frac{1}{2}(1+x)^{-\frac{3}{2}}$

$2x \left(-\frac{1}{2}(1+x)^{-\frac{3}{2}} \right) + (1+x)^{-\frac{1}{2}}(2)$

$-x(1+x)^{-\frac{3}{2}} + 2(1+x)^{-\frac{1}{2}}$

$$= \frac{2}{(1+x)^{\frac{1}{2}}} - \frac{x}{(1+x)^{\frac{3}{2}}}$$

$A = 2$

$B = -1$

↖ Final Answer!!

iii.) $\int \frac{2}{(1+x)^{\frac{1}{2}}} - \frac{x}{(1+x)^{\frac{3}{2}}} dx = \frac{2x}{\sqrt{1+x}}$

$$\int \frac{2}{(1+x)^{\frac{1}{2}}} dx - \int \frac{x}{(1+x)^{\frac{3}{2}}} dx = \frac{2x}{\sqrt{1+x}}$$

$$\int \frac{2}{(1+x)^{\frac{1}{2}}} dx - \frac{2x}{\sqrt{1+x}} = \int \frac{x}{(1+x)^{\frac{3}{2}}} dx$$

$\left[2(1+x)^{-\frac{1}{2}} \right] = 1(1+x)^{\frac{1}{2}}$

$$\left[1(1+x)^{\frac{1}{2}} - \frac{2x}{\sqrt{1+x}} \right]_0^3$$

insert limits:

$$(1+3)^{\frac{1}{2}} - \frac{2(3)}{\sqrt{1+3}} - \left((0+1)^{\frac{1}{2}} - \frac{2(0)}{\sqrt{0+1}} \right)$$

$$= 1$$

↖ Final Answer !!

0606_w10_qp_13

12 OR

A curve has the equation $y = Ae^{2x} + Be^{-x}$ where $x \geq 0$. At the point where $x = 0$, $y = 50$ and $\frac{dy}{dx} = -20$.

- (i) Show that $A = 10$ and find the value of B . [5]
- (ii) Using the values of A and B found in part (i), find the coordinates of the stationary point on the curve. [4]
- (iii) Determine the nature of the stationary point, giving a reason for your answer. [2]

i.) Substitute $x=0 \Rightarrow y=50$
into $y = Ae^{2x} + Be^{-x}$

$$50 = Ae^{2(0)} + Be^{-(0)}$$

$$A+B=50 \quad \textcircled{1}$$

$$\frac{dy}{dx} = -20$$

$$\frac{d}{dx}(Ae^{2x} + Be^{-x})$$

$$2Ae^{2x} - Be^{-x} \text{ when } x=0, \frac{dy}{dx} = -20$$

$$2Ae^{2(0)} - Be^{-(0)} = -20$$

$$2A - B = -20 \quad \textcircled{2}$$

Solve $\textcircled{1} \wedge \textcircled{2}$ simultaneously

Elimination Method

$$\begin{array}{r} 2A - B = -20 \\ + A + B = 50 \\ \hline 3A = 30 \end{array}$$

$$A = 10$$

Substitute $A = 10$ into $A+B=50$

$$10+B=50$$

$$B=40$$

ii.) $\frac{dy}{dx} = 0$

$$2Ae^{2x} - Be^{-x} = 0$$

$$2(10)e^{2x} - 40e^{-x} = 0$$

$$20e^{2x} = 40e^{-x}$$

$$\frac{e^{2x}}{e^{-x}} = \frac{40}{20}$$

$$e^{3x} = 2$$

$$3x = \ln 2$$

$$x = \frac{\ln 2}{3}$$

To find y , substitute x into y equation

$$(10e^{2(\frac{\ln 2}{3})} + 40e^{-(\frac{\ln 2}{3})}) = y$$

$$y = 47.6$$

$(\frac{\ln 2}{3}, 47.6)$ Final Answer!!

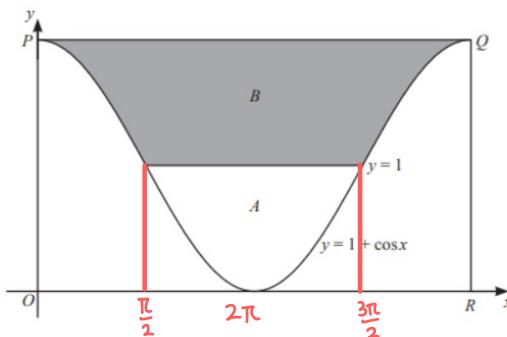
iii.) $\frac{d}{dx}(20e^{2x} - 40e^{-x})$

if $\frac{d^2y}{dx^2} > 0$ minimum $\wedge < 0$, maximum

$$40e^{2x} + 40e^{-x} > 0 \quad [\text{minimum}]$$

0606_S22_qp_22

11



The diagram shows part of the line $y = 1$ and one complete period of the curve $y = 1 + \cos x$, where x is in radians. The line PQ is a tangent to the curve at P and at Q . The line QR is parallel to the y -axis. Area A is enclosed by the line $y = 1$ and the curve. Area B is enclosed by the line $y = 1$, the line PQ and the curve.

Given that area A : area B is $1 : k$ find the exact value of k .

[9]

① Find area $PQOR = 2 \times 2\pi = 4\pi$

② Area under the graph

$$= \int_0^{2\pi} 1 + \cos x \, dx$$

$$= [x + \sin x]_0^{2\pi}$$

$$= 2\pi + \sin(2\pi) - (0 + \sin(0))$$

$$= 2\pi$$

③ Find $A \nmid B$

$$A + B = 4\pi - 2\pi = 2\pi$$

Let $1 + \cos x$ equal to 1 to find intersects $(\frac{3\pi}{2} \nmid \frac{\pi}{2})$

$$\int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} 1 + \cos x \, dx$$

$$[x + \sin x]_{\frac{\pi}{2}}^{\frac{3\pi}{2}}$$

$$\frac{3\pi}{2} + \sin \frac{3\pi}{2} - \left(\frac{\pi}{2} + \sin \frac{\pi}{2} \right) = \pi - 2$$

$$\text{Area of } A = \pi - (\pi - 2) \\ A = 2$$

Area of Rectangle

$$\text{Area of } A = \pi - (\pi - 2)$$

6 The points $A(5, -4)$ and $C(11, 6)$ are such that AC is the diagonal of a square, $ABCD$.

(a) Find the length of the line AC . [2]

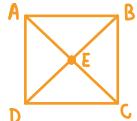
$$AC = \sqrt{(5-11)^2 + (-4-6)^2}$$

$$AC = 2\sqrt{74} \#$$

(b) (i) The coordinates of the centre, E , of the square are $(8, y)$. Find the value of y . [1]

$$\text{Midpoint } AC : \left(\frac{5+11}{2}, \frac{-4+6}{2} \right)$$

$$= (8, 1) \quad y = 1 \#$$



(ii) Find the equation of the diagonal BD . [3]

ii.) $BD = \text{perpendicular bisector of } AC$

gradient $AC : \frac{-4-6}{5-11} \quad \text{midpoint } AC [8, 1]$

$$: \frac{5}{3}$$

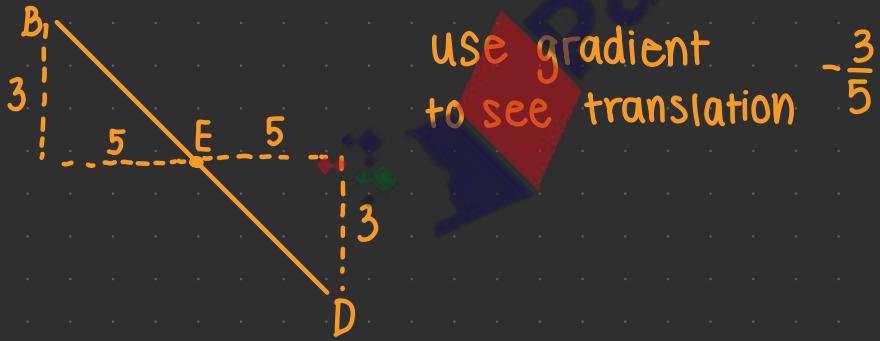
Perpendicular gradient $= -\frac{1}{\frac{5}{3}} = -\frac{3}{5}$

$$BD : y-1 = -\frac{3}{5}(x-8) \quad BD : y = -\frac{3}{5}x + \frac{24}{5} + 1$$

↗ Final Answer!!

$$y = -\frac{3}{5}x + \frac{29}{5}$$

(iii) Given that the x -coordinate of B is less than the x -coordinate of D , write \vec{EB} and \vec{ED} as column vectors. [2]



$$\vec{EB} : \begin{pmatrix} -5 \\ 3 \end{pmatrix}$$

$$\vec{ED} : \begin{pmatrix} -5 \\ 3 \end{pmatrix}$$

13 The functions f and g are defined, for $x > 0$, by

$$f(x) = \frac{2x^2 - 1}{3x},$$

$$g(x) = \frac{1}{x}.$$

(b) (i) Given that f^{-1} exists, write down the range of f^{-1} . [1]

(ii) Show that $f^{-1}(x) = \frac{px + \sqrt{qx^2 + r}}{4}$, where p, q and r are integers. [4]

b i.) range of $f^{-1}(x) = \text{domain of } f(x)$

$$f^{-1}(x) > 0 \rightarrow \text{Final Answer!!}$$

$$b \text{ ii.) } \frac{2x^2 - 1}{3x} = y$$

$$2x^2 - 1 = 3xy$$

$$2x^2 - 3xy - 1 = 0$$

$$a = 2, b = -3y, c = -1$$

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$\frac{-(-3y) \pm \sqrt{(-3y)^2 - 4(2)(-1)}}{2(2)}$$

$$= \frac{3y \pm \sqrt{9y^2 + 8}}{4} \quad (f^{-1}(x) > 0)$$

$$f^{-1}(x) = \frac{3x + \sqrt{9x^2 + 8}}{4}$$

↑ Final Answer!!