Cambridge International AS & A Level CHEMISTRY Paper 3 Advanced Practical Skills 1 MARK SCHEME Maximum Mark: 40 Published This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers. Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers. Cambridge International will not enter into discussions about these mark schemes. Cambridge International is publishing the mark schemes for the May/June 2025 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components. #### **PUBLISHED** ### **Generic Marking Principles** These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptions for a question. Each question paper and mark scheme will also comply with these marking principles. #### **GENERIC MARKING PRINCIPLE 1:** Marks must be awarded in line with: - the specific content of the mark scheme or the generic level descriptors for the question - the specific skills defined in the mark scheme or in the generic level descriptors for the question - the standard of response required by a candidate as exemplified by the standardisation scripts. ### **GENERIC MARKING PRINCIPLE 2:** Marks awarded are always whole marks (not half marks, or other fractions). ### **GENERIC MARKING PRINCIPLE 3:** Marks must be awarded **positively**: - marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate - marks are awarded when candidates clearly demonstrate what they know and can do - marks are not deducted for errors - marks are not deducted for omissions - answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous. #### **GENERIC MARKING PRINCIPLE 4:** Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors. ### **GENERIC MARKING PRINCIPLE 5:** Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen). ### **GENERIC MARKING PRINCIPLE 6:** Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind. ### **Science-Specific Marking Principles** - 1 Examiners should consider the context and scientific use of any keywords when awarding marks. Although keywords may be present, marks should not be awarded if the keywords are used incorrectly. - 2 The examiner should not choose between contradictory statements given in the same question part, and credit should not be awarded for any correct statement that is contradicted within the same question part. Wrong science that is irrelevant to the question should be ignored. - Although spellings do not have to be correct, spellings of syllabus terms must allow for clear and unambiguous separation from other syllabus terms with which they may be confused (e.g. ethane / ethene, glucagon / glycogen, refraction / reflection). - The error carried forward (ecf) principle should be applied, where appropriate. If an incorrect answer is subsequently used in a scientifically correct way, the candidate should be awarded these subsequent marking points. Further guidance will be included in the mark scheme where necessary and any exceptions to this general principle will be noted. ## 5 <u>'List rule' guidance</u> For questions that require *n* responses (e.g. State **two** reasons ...): - The response should be read as continuous prose, even when numbered answer spaces are provided. - Any response marked *ignore* in the mark scheme should not count towards *n*. - Incorrect responses should not be awarded credit but will still count towards *n*. - Read the entire response to check for any responses that contradict those that would otherwise be credited. Credit should **not** be awarded for any responses that are contradicted within the rest of the response. Where two responses contradict one another, this should be treated as a single incorrect response. - Non-contradictory responses after the first *n* responses may be ignored even if they include incorrect science. ### 6 Calculation specific guidance Correct answers to calculations should be given full credit even if there is no working or incorrect working, **unless** the question states 'show your working'. For questions in which the number of significant figures required is not stated, credit should be awarded for correct answers when rounded by the examiner to the number of significant figures given in the mark scheme. This may not apply to measured values. For answers given in standard form (e.g. $a \times 10^n$) in which the convention of restricting the value of the coefficient (a) to a value between 1 and 10 is not followed, credit may still be awarded if the answer can be converted to the answer given in the mark scheme. Unless a separate mark is given for a unit, a missing or incorrect unit will normally mean that the final calculation mark is not awarded. Exceptions to this general principle will be noted in the mark scheme. ### 7 <u>Guidance for chemical equations</u> Multiples / fractions of coefficients used in chemical equations are acceptable unless stated otherwise in the mark scheme. State symbols given in an equation should be ignored unless asked for in the question or stated otherwise in the mark scheme. ## **Annotations guidance for centres** Examiners use a system of annotations as a shorthand for communicating their marking decisions to one another. Examiners are trained during the standardisation process on how and when to use annotations. The purpose of annotations is to inform the standardisation and monitoring processes and guide the supervising examiners when they are checking the work of examiners within their team. The meaning of annotations and how they are used is specific to each component and is understood by all examiners who mark the component. We publish annotations in our mark schemes to help centres understand the annotations they may see on copies of scripts. Note that there may not be a direct correlation between the number of annotations on a script and the mark awarded. Similarly, the use of an annotation may not be an indication of the quality of the response. The annotations listed below were available to examiners marking this component in this series. #### **Annotations** | Annotation | Meaning | |------------|--| | * | Correct point or mark awarded | | × | Incorrect point or mark not awarded | | ^ | Information missing or insufficient for credit | | BOD | Benefit of the doubt given | | CON | Contradiction in response otherwise markworthy, mark not given | | DP | Error in number of decimal places | | ECF | Error carried forward applied | | I | Incorrect or insufficient point ignored while marking the rest of the response | | NBOD | Benefit of the doubt not applied in this instance | | Annotation | Meaning | |------------|--| | RE | Rounding error | | REP | Repeat error | | SEEN or / | Blank page or part of script seen | | SF | Error in number of significant figures | | TE | Transcription error | | Question | Answer | Marks | |-----------|---|-------| | 1(a) | M1 Unambiguous headings and correct units for (mass of) container with FA 1 (mass of) container (+ residual FA 1) (mass of) FA 1 (added) (final) volume (of gas produced) Units: /g, (g), in g or g with each mass entry AND /cm³, (cm³), in cm³ or cm³ against the volume entry M2 Both balance readings given consistently to either 2 or to 3 dp AND mass of FA 1 correctly calculated AND volume recorded as integer (cylinder graduations at 2 cm³) | 3 | | | M3 125 cm³ ≤ volume of gas collected ≤ 250 cm³ | | | 1(b)(i) | Correctly calculates amount of $CO_2 = {}^{\text{vol in (a)}}/{}_{24000}$ mol AND answer given to $2-4\text{sf}$ | 1 | | 1(b)(ii) | $\mathbf{M}_2 CO_3(s) + H_2 SO_4(aq) \rightarrow \mathbf{M}_2 SO_4(aq) + H_2 O(I) + CO_2(g)$ | 1 | | 1(b)(iii) | Correctly uses amount of $M_2CO_3 = (b)(i)$ mol AND M_r of $M_2CO_3 = {}^{mass of FA 1}/{}_{(b)(i)}$ AND answer given to $2-4 sf$ | 1 | | 1(b)(iv) | M1 Correct working shown A_r of $\mathbf{M} = \frac{((\mathbf{b})(\mathbf{i}\mathbf{i}\mathbf{i}) - 60)}{2}$ M2 Identifies closest group 1 metal $\mathbf{L}\mathbf{i} \le 14.95 \le \mathbf{Na} \le 31.05 \le \mathbf{K} \le 62.30 \le \mathbf{Rb} \le 109.20 \le \mathbf{Cs} \le 250.$ | 2 | | 1(b)(c) | percentage error = (49.3 - 40.1) × 100 / 40.1 = 22.9 % | 1 | | Question | Answer | Marks | |----------|--|-------| | 1(d) | The calcium sulfate formed is sparingly / partially soluble in water (so inhibits further reaction) OR a sparingly/partially soluble surface layer is formed. | 1 | | Question | Answer | Marks | |----------|---|-------| | 2(a) | I All the following data recorded two burette readings and titre for the rough titration initial AND final burette readings for two (or more) accurate titrations | 1 | | | II Titre values recorded for accurate titrations and correct headings and units in the accurate titration table initial / start AND (burette) reading / volume final / end AND (burette) reading / volume titre OR volume / FA 4 AND used / added unit: /cm³ OR (cm³) OR in cm³ (for each heading) OR cm³ unit given for each volume recorded | 1 | | | III All accurate burette readings are to nearest 0.05 cm ³ . | 1 | | | IV The final accurate titre recorded must be within 0.10 cm³ of any other accurate titre. | 1 | | | Accuracy (Q) marks Round burette readings to the nearest 0.05cm³. Check and correct titre subtractions where necessary. Select the best mean titre, using the following hierarchy: • two (or more) accurate identical titres (ignoring any that are labelled 'rough'), then • two (or more) accurate titres within 0.05 cm³, then • two(or more) accurate titres within 0.10 cm³, etc. | | | | Calculate the candidate's mean value. Calculate the difference (δ) between the candidate's mean titre and the supervisor's mean titre. | | | | Award \mathbf{V} if $\delta \leqslant 0.50$ (cm ³)
Award \mathbf{VI} if $\delta \leqslant 0.30$
Award \mathbf{VII} if $\delta \leqslant 0.20$ | 3 | | Question | Answer | Marks | |-----------|--|-------| | 2(b) | Correct calculation of the mean titre Candidate must take the average of two (or more) titres that are within a total spread of not more than 0.20 cm³. Working / explanation must be shown OR ticks must be put next to the two (or more) accurate readings selected. The mean should be quoted to 2 d.p. and be rounded to nearest 0.01 cm³. | 1 | | 2(c)(i) | Correctly calculates amount of $H_2SO_4 = 0.0500 \times {}^{(b)}/{}_{1000}$ mol AND answer given to 3 or 4 sf | 1 | | 2(c)(ii) | Correctly uses amount of $\mathbf{Z}_2 CO_3 = (\mathbf{c})(\mathbf{i}) \times {}^{1000}/{}_{25} \text{mol}$ AND answer given to 3 or 4 sf | 1 | | 2(c)(iii) | Correctly uses M1 M_r of $\mathbf{Z}_2\mathrm{CO}_3 = {}^{7.26}/_{(c)(ii)}$ M2 A_r of $\mathbf{Z} = {}^{(answer-60)}/_2$ AND correctly identifies \mathbf{Z} Li $\leq 14.95 \leq \mathrm{Na} \leq 31.05 \leq \mathrm{K} \leq 62.30 \leq \mathrm{Rb} \leq 109.20 \leq \mathrm{Cs} \leq 250.$ | 2 | | 2(d) | amount/moles of metal carbonate is less with hydrated salt AND (fewer moles of acid are required so) titre is smaller | 1 | | 2(e) | two of the following: • some CO ₂ / gas dissolved in water (so volume inaccurate) • some CO ₂ / gas escaped before bung was inserted • concordant titres | 2 | | Question | Answer | Marks | | |----------|---|-------|--| | | FA 6 is FeSO₄(aq); FA 7 is CrCℓ₃(aq); FA 8 is C₂H₅OH(aq) | | | | 3(a)(i) | Marks for observations: 2 * = 1 mark | 4 | | | | Test 1 FA 6 green ppt * insoluble in excess OR ppt turns brown on standing / in air * | | | | | FA 7 grey-green ppt * soluble in excess OR forms dark green solution * | | | | | Test 2 FA 7 grey-green ppt insoluble in excess * (pale) purple / mauve / lilac solution on standing * | | | | | Test 3 FA 6 With peroxide: (solution) turns yellow AND with hydroxide: (dark) brown ppt/solid with NaOH(aq)* | | | | | In either box (or both) bubbling / effervescence / fizzing * gas relights glowing splint * | | | | 3(a)(ii) | M1 Tests and observations shown clearly in a table with at least one reagent and one observation listed. Headings must be given. | 4 | | | | M2 Tests both FA 6 AND FA 7 with one of (aqueous) silver nitrate / barium chloride / barium nitrate (1st reagent) OR Tests FA 6 or FA 7 with two of the reagents given above. | | | | | M3 FA 6 + BaC l_2 (aq) or Ba(NO ₃) ₂ (aq): white ppt AND insoluble in (dilute) HNO ₃ or HC l | | | | | M4 FA 7 + AgNO ₃ (aq): white ppt | | | | Question | Answer | Marks | |-----------|---|-------| | 3(a)(iii) | M1 FA 6 is FeSO ₄ | 2 | | | M2 FA 7 is $CrCl_3$ | | | 3(b)(i) | M1 Observation: KMnO ₄ / purple (solution) turns colourless / pale yellow / pale brown | 2 | | | M2 Conclusion: FA 8 could be any two from 1° alcohol / 2° alcohol / aldehyde OR FA 8 cannot be ketone / 3° alcohol | | | 3(ii) | M1 Observation: no change / no reaction / no effervescence | 2 | | | M2 Conclusion: FA 8 is not a (carboxylic) acid | | | 3(iii) | One of: • 2,4-DNPH / Brady's reagent AND aldehyde • Tollens' / Fehling's / Sandell's (reagent) AND aldehyde • Na / PC l ₅ / SOC l ₂ AND alcohol | 1 |