Q1.

	3	(a)	(i)	ductile E	31						
			(ii)1	L shown at end of straight line	31						
			(ii)2	reciprocal of gradient of straight line region E	31	[3]					
		(b)	(i)1	circumference = 3π cm or arc = $r\theta$							
				extension = $(6.5/360) \times 3\pi$ = 1.5 sin (or tan) 6.5							
			(i)2	strain = extension/length							
				= 0.17/250 = 6.8 x 10 ⁻⁴		[4]					
			(ii)	stress = force/area							
				= 7.44 x 10 ⁷ Pa	λ1	[3]					
		(iii)	Yo	ung modulus = stress/strain(21						
				= $(7.44 \times 10^7)/(6.8 \times 10^{-4})$ = 1.1×10^{11} Pa	۸.1	[2]					
				- 1.1 X 10 Fa	~ I	141					
		(iv)	ren	emove extra load and see if pointer returns to original position or							
			wir	e returns to original length	31	[1]					
Q2.											
2			20.00		<u> </u>	100000					
4		(a)	brit	tle	B1	[1]					
		(b)	(i) str	ess = force/area	C1						
		1-7	117	$=60/(7.9\times10^{-7})$							
				$= 7.6 \times 10^7 \text{Pa}$	A1	[2]					
			s.								
				ung modulus = stress/strain iting strain = 0.03/24 (= 1.25 × 10 ⁻³)	C1 C1						
				ung modulus = $(7.6 \times 10^7)/(1.25 \times 10^{-3}) = 6.1 \times 10^{10} \text{ Pa}$	A1	[3]					
		***	` '	any modulus = (1.0 × 10)/(1.20 × 10) = 0.1 × 10 1 a	Ai	[9]					
			(iii) en	$ergy = \frac{1}{2} \times 60 \times 3.0 \times 10^{-4}$	C1						
				$= 9.0 \times 10^3 \text{ J}$	A1	[2]					
		(-)	IE L	and hall door not deform (much)	D1						
		(c)		ard, ball does not deform (much) d either (all) kinetic energy converted to strain energy	B1 B1						
			an	If soft, E _k becomes strain energy of ball and window	B1						
				(no mention of strain energy, max 2 marks)							
				mpulse for hard ball takes place over shorter time (B1)							
				arger force/greater stress (B1)		[3]					

Q3.

5	(a)	no l (do	M1 A0		[1]	
	(b)	wor	В1			
		F = wo	= $\frac{1}{2}Fx$	A1 A1 A0		[3]
	(c)	gair	n in energy of trolley = $\frac{1}{2}k(0.060^2 - 0.045^2) + \frac{1}{2}k(0.030^2 - 0.045^2)$ = 0.36 J	C1 C1		
			etic energy = $\frac{1}{2} \times 0.85 \times v^2 = 0.36$ 0.92 m s ⁻¹	C1 A1		[4]
Q4.						
2	(a)	(i)	k is the reciprocal of the gradient of the graph $k = \{32 / (4 \times 10^{-2}) = \} 800 \text{ N m}^{-1}$	2	C1 A1	[2]
		(ii)	either energy = average force × extension or $\frac{1}{2}kx^2$ or area under graph line energy = $\frac{1}{2} \times 800 \times (3.5 \times 10^{-2})^2$ or $\frac{1}{2} \times 28 \times 3.5 \times 10^{-2}$ energy = 0.49 J		C1 M1 A0	[2]
	(b)	(i)	momentum before cutting thread = momentum after $0 = 2400 \times V - 800 \times v$ $v / V = 3.0$		C1 M1 A0	[2]
		(ii)	energy stored in spring = kinetic energy of trolleys $0.49 = \frac{1}{2} \times 2.4 \times (\frac{1}{3} v)^2 + \frac{1}{2} \times 0.8 \times v^2$		C1 C1	
			v = 0.96 m s ⁻¹ (if only one trolley considered, or masses combined, allow max 1 mark)		A1	[3]
Q5.			10.0			
4	(a)	(1)	 stress = force / (cross-sectional) area strain = extension / <u>original</u> length Young modulus = stress / strain (ratios must be clear in each answer) 	B1 B1 B1	[1] [1] [1]	
		(11)	either fluids cannot be deformed in one direction / cannot be stretched or fluids can only have volume change			
			or no fixed shape	B1	[1]	
	(b)	eitl	ther unless Δp is very large or 2.2×10^9 is a large number ΔV is very small or $\Delta V/V$ is very small, (so 'incompressible')	M1 A1	[2]	
	(c)	1.0 h =	$ = h\rho q 11 \times 10^5 = h \times 1.08 \times 10^3 \times 9.81 = 9.53 m $	C1 C1		
			/h = 0.47/10 or 0.47/9.53 or = 4.7% or 4.9% or 5%	A1	[3]	

Q6.

	4	(a)	(i)	change of shape / size / length / dimensionwhen (deforming) force is removed, returns to original shape / size	C1 A1		[2]
			(ii)	L = ke	B1		[1]
		(b)	½e 3/₂ e	(allow e.c.f. from extension) and 2k(allow e.c.f. from extension in part 2)	B1 B1 B1		15
			3 K	(allow e.c.f. from extension)	B1		[5]
Q7. 3	(a)	eit	ther	energy (stored)/work done represented by area under graph	0		
		or er		energy = <u>average</u> force × extension y = ½ × 180 × 4.0 × 10 ⁻² = 3.6 J		B1 C1 A1	[3]
	(b)	(i) eit or or	force on trolleys equal and opposite (A1)		M1 A1	[2]
		(ii	1	$M_1V_1 = M_2V_2 \qquad \dots$		В1	[1]
				$E = \frac{1}{2} M_1 V_1^2 + \frac{1}{2} M_2 V_2^2$			[1]
		(iii) 1	$E_{\rm K} = \frac{1}{2}mv^2$ and $p = mv$ combined to give $E_{\rm K} = p^2/2m$		M1 A0	[1]
00		4	2	m smaller, E _K is larger because p is the same/constantso trolley B		M1 A0	[1]
28 .		•	*				
5	(a)	(i	da	oung modulus = stress/strain ata chosen using point in linear region of graph oung modulus = (2.1 × 10 ⁸)/(1.9 × 10 ⁻³) 1.1 × 10 ¹¹ Pa	M1		[3]
		(ii		nis mark was removed from the assessment, owing to a power-of- econsistency in the printed question paper.	ten		
	(b)	w	hen	etween lines represents energy/area under curve represents ener rubber is stretched and then released/two areas are different ergy seen as thermal energy/heating/difference represents energy	A1		
		re	leas	ed as heat	A1		[3]

Q9.

4	(a)	(i)	stress is force / area	B1	[1]
		(ii)	strain is extension / original length	В1	[1]
	(b)	(i)	$E = [F/A] \div [e/\overline{l}]$ $e = (25 \times 1.7) / (5.74 \times 10^{-8} \times 1.6 \times 10^{11})$ $e = 4.6 \times 10^{-3} \text{ m}$	C1 C1 A1	[3]
		(ii)	A becomes A/2 or stress is doubled $e \propto l/A$ or substitution into full formula total extension increase is $4e$	B1 B1 A1	[3]
Q10.			.0		
4	(a)	atta	mped horizontal wire over pulley or vertical wire attached to ceiling with mass ached ails: reference mark on wire with fixed scale alongside	B1 B1	[2]
	(b)	me sca me goo me	asure original length of wire to reference mark with metre ruler / tape asure diameter with micrometer / digital calipers asure initial and final reading (for extension) with metre ruler or other suitable ale asure / record mass or weight used for the extension od physics method: asure diameter in several places / remove load and check wire returns to sinal length / take several readings with different loads	(B1) (B1) (B1) (B1) (B1)	
		MA	X of 4 points	B4	[4]
	(c)	plo det cal	emine extension from final and initial readings t a graph of force against extension emine gradient of graph for F/e culate area from $\pi d^2/4$ culate E from $E = F/l/e$ A or gradient $\times l/A$	(B1) (B1) (B1) (B1) (B1)	
Q11.		MA	X of 4 points	В4	[4]

```
(a) force is proportional to extension
                                                                                                             B1
                                                                                                                   [1]
        (b) (i) gradient of graph determined (e.g. 50 / 40 \times 10^{-3}) = 1250 Nm<sup>-1</sup>
                                                                                                             A1
                                                                                                                   [1]
            (ii) W = \frac{1}{2} k x^2
                                    or W = \frac{1}{2} final force × extension
                                                                                                             M1
                     = 0.5 \times 1250 \times (36 \times 10^{-3})^2 or 0.5 \times 45 \times 36 \times 10^{-3}
                                                                                                             M1
                     = 0.81 J
                                                                                                             A<sub>0</sub>
                                                                                                                   [2]
        (c) (i) 0.81 = \frac{1}{2} mv^2
                                                                                                             C1
                  v = 8.0 (8.0498) \text{ ms}^{-1}
                                                                                                             A1
                                                                                                                    [2]
            (ii) 4 × KE / 4 × WD or 3.24 J
                                                                                                             C<sub>1</sub>
                  hence twice the compression = 72 mm
                                                                                                             A1
                                                                                                                    [2]
                                                       cambridge
            (iii) Max height is when all KE or WD
                  or elastic PE is converted to GPE
                                                                                                             C1
                  ratio = 1/4 or 0.25
                                                                                                             A1
                                                                                                                    [2]
Q12.
        (a) Resultant force (and resultant torque) is zero
                                                                                                        B1
              Weight (down) = force from/due to spring (up)
                                                                                                        B1
                                                                                                                  [2]
         (b) (i) 0.2, 0.6, 1.0s (one of these)
                                                                                                        A1
                                                                                                                  [1]
             (ii) 0, 0.8 s (one of these)
                                                                                                        A1
                                                                                                                  [1]
            (iii) 0.2, 0.6, 1.0s (one of these)
                                                                                                        A1
                                                                                                                  [1]
    (c) (i) Hooke's law: extension is proportional to the force (not mass)
                                                                                                       B1
              Linear/straight line graph hence obeys Hooke's law
                                                                                                       B1
                                                                                                                 [2]
         (ii) Use of the gradient (not just F = kx)
                                                                                                       C1
              K = (0.4 \times 9.8) / 15 \times 10^{-2}
                                                                                                      M1
                  = 26(.1) Nm^{-1}
                                                                                                       A<sub>0</sub>
                                                                                                                 [2]
        (iii) either energy = area to left of line or energy = ½ ke2
                                                                                                       C1
                                = \frac{1}{2} \times [(0.4 \times 9.8) / 15 \times 10^{-2}] \times (15 \times 10^{-2})^{2}
                                                                                                       C1
                                 0.294 J (allow 2 s.f.)
                                                                                                       A1
                                                                                                                 [3]
```

Q13.

5 (a) E = stress / strain **B1** [1] (b) (i) 1. diameter / cross sectional area / radius 2. original length **B1** [1] (ii) measure original length with a metre ruler / tape **B1** measure the diameter with micrometer (screw gauge) **B1** [2] allow digital vernier calipers (iii) energy = $\frac{1}{2}$ Fe or area under graph or $\frac{1}{2}$ kx^2 C1 $= \frac{1}{2} \times 0.25 \times 10^{-3} \times 3 = 3.8 \times 10^{-4} \text{J}$ A1 [2] (c) straight line through origin below original line M1 line through (0.25, 1.5) **A1** [2] Q14. (a) the wire returns to its original length when the load is removed [2] Q15. (a) (i) stress = force / cross-sectional area **B1** [1] (ii) strain = extension / original length **B1** [1] (b) (i) E = stress / strain C1 $E = 0.17 \times 10^{12}$ C1 stress = 0.17 × 10¹² × 0.095 / 100 C1 $= 1.6(2) \times 10^{8} Pa$ A1 [4] (ii) force = (stress × area) = $1.615 \times 10^8 \times 0.18 \times 10^{-6}$ C₁

A1

[2]

= 29(.1)N

Q16.

9 (a) (i)	stress = F / A	C1 4	
		= 1.47×10^7 Pa(do not allow 1 sig fig)	A1	
	(ii)	stress = $E \times \text{strain}$ 1.47 × 10 ⁷ = 7.1 × 10 ¹⁰ × (ΔI / 1.8)	C1	
		$\Delta l = 0.37 \mathrm{mm}$	A 1	[4]
(b)	$R = \rho l/A$ OR $R \propto L$	C1	
		so, $\Delta R/R = \Delta I/I$	C1	
		$\Delta R = (3.7 \times 10^{-4} / 1.8) \times 0.03 = 6.2 \times 10^{-6} \Omega$	A1	[3]
		May calculate $\rho = 2.833 \times 10^{-8} \Omega$ m giving new R as $3.0006167 \times 10^{-2} \Omega$ hence ΔR - full credit possible	2	
		However, if rounds off ρ as $2.83 \times 10^{-8} \Omega$ m, then $R_{\text{new}} < R_{\text{old}}!$ Allow 1 mark only for $R \propto L$		7 8
Q17.				
5	(a) (i)	F/A	B 1	
	(ii)	AL/L	B1	

B1 [3]

A0 [2]

A1 [2]

М2

C1

(iii)FL/A.∆L

(b) (i) $\Delta L = 0.012 \times 0.62 \times 350$

= 2.6 mm

(ii) $2.0 \times 10^{11} = (F \times 0.62)/(7.9 \times 10^{-7} \times 2.6 \times 10^{-3})$

(iii) either stress when cold = $660/(7.9 \times 10^{-7}) = 840 \text{ MPa}$

or tension at uts = 198 N

M1

either this is greater than the ultimate tensile stress

or tension at uts is less then tension in (ii)

A1

the wire will snap

A1 [3]

(Allow possibility for the two 'A' marks to be scored as long as some quantitative answer – even if incorrect – has been given for the 'M' mark)

Q18.

6 (a) (i) $R = \rho L/A$ B1
(ii) strain = $\Delta L/L$ B1
either $\Delta R = \rho \Delta L/A$ or $R \propto L$ with ρ and A constant dividing, $\Delta R/R = \Delta L/L$ A0 [3]

(b) Young modulus = stress / strain C1 strain = $72.0 / (1.20 \times 10^{-7} \times 2.10 \times 10^{11})$ C1 = 2.86×10^{-3} (allow 1/350 A1 $\Delta R = 2.86 \times 10^{-3} \times 4.17 = 1.19 \times 10^{-2} \Omega$ A1 answer given to 3 sig. fig B1 [5]

Q19.

4 (a) brittle B1 [1]

(b) Young modulus = stress / strain C1 = $(9.5 \times 10^8) / 0.013$ = 7.3×10^{10} Pa (allow $\pm 0.1 \times 10^{10}$ Pa) A1 [2]

(c) stress = force / area C1

(minimum) area = $(1.9 \times 10^3) / (9.5 \times 10^8)$ = 2.0×10^{-6} m² C1

(max) area of cross-section = $(3.2 - 2.0) \times 10^{-6}$ = 1.2×10^{-6} m² A1 [3]

(d) when bent, 'top' and 'bottom' edges have different extensions

with thick rod, difference is greater (than with a thin rod)

so breaks with less bending

A1

A0 [2]

Q20.

4	(a) (i) returns to original shape / size / length etc	
	(ii) 1 R = pL/A	
	(b) $E = WR/e\rho$	21
Q21.		
4	(a) ability to do work	[2]
	(b) work = average force ×distance moved (in direction of the force) B1 either work = $\frac{1}{2} \times F \times x$ or work is area under $\frac{F}{x}$ graph which is $\frac{1}{2}Fx$ B1 $F = kx$ B1 so work / energy = $\frac{1}{2}kx^2$ A0	[3]
	(c) (i) spring constant = $\frac{3.8}{2.1}$	[1]
	(ii) $1 \Delta E_P = mg\Delta h$ or $W\Delta h$	[2]
	= 0.077 J	[1]
	3 work done = $0.077 - 0.057$ = 0.020 J	[1]
Q22.	Total	: 10]

4	(a) (i)	F/A	В1	[1]					
	(ii)	$\Delta L / L$	В1	[1]					
	(iii)	allow FL/AΔL	В1	[1]					
	(iv)	allow $\rho L/A$ or $\rho(L + \Delta L)/A$	B1	[1]					
	(b) (i)	$\Delta L = FL / EA$ = $(30 \times 2.6) / (7.0 \times 10^{10} \times 3.8 \times 10^{-7})$ = 2.93×10^{-3} m = 2.93 mm	M1 A0	[1]					
	(ii)	$\Delta R = \rho \Delta L / A$ = $(2.6 \times 10^{-8} \times 2.93 \times 10^{-3}) / (3.8 \times 10^{-7})$	C1						
Q23. 4		$= 2.0 \times 10^{-4} \Omega$	A1	[2]					
		c) change in resistance is (very) small so method is not appropriate							
	(H	energy = average force × extension = $\frac{1}{2} \times F \times x$ (Hooke's law) extension proportional to (applied) force hence $F = kx$ so $E = \frac{1}{2}kx^2$							
	(b) (i)	correct area shaded	В1	[1]					
	(ii)	1.0 cm ² represents 1.0 mJ or correct units used in calculation $E_{\rm S} = 6.4 \pm 0.2$ mJ or correct units used in calculation (for answer > ± 0.2 mJ but $\leq \pm 0.4$ mJ, then allow 2/3 marks)	C1 A2	[3]					
	(iii)	arrangement of atoms / molecules is changed	В1	[1]					

- 5 (a) (i) Fig. 5.2 **B1** [1]
 - (ii) Fig. 5.3 B1 [1]
 - (b) kinetic energy increases from zero then decreases to zero **B1** [1]
 - C1 (c) (i) $\Delta E_P = mg\Delta h / mgh$ $= 94 \times 10^{-3} \times 9.8 \times 2.6 \times 10^{-2}$ using q = 10 then -1[2]
 - (ii) either $0.024 = \frac{1}{2}k \times (2.6 \times 10^{-2})^2$ or $\frac{1}{2}kd^2 = \frac{1}{2}k \times (2.6 \times 10^{-2})^2 \frac{1}{2}kd^2$ $kd^2 = \frac{1}{2}k \times (2.6 \times 10^{-2})^2$ $0.012 = \frac{1}{2}k \times d^2$ C1 $d = 0.018 \,\mathrm{m}$ $d = 0.018 \,\mathrm{m}$

= 1.8 cm

A1

A1

[3]

Q25.

(a) extension is proportional to force (for small extensions) **B1** [1]

= 1.8 cm

- (b) (i) point beyond which (the spring) does not return to its original length when the load is removed **B1** [1]
 - (ii) gradient of graph = 80 Nm⁻¹ A1 [1]
 - (iii) work done is area under graph / 1/2 Fx / 1/2 Kg C1 $= 0.5 \times 6.4 \times 0.08 = 0.256$ (allow 0.26) J [2] A1
- (c) (i) extension = 0.08 + 0.04 = 0.12 m [1]
 - (ii) spring constant = $6.4 / 0.12 = 53.3 \text{ Nm}^{-1}$ [1] Α1

Q26.

- (a) (i) stress = force / (cross-sectional) area **B1** [1]
 - (ii) strain = extension / original length or change in length / original length **B1** [1]
 - (b) point beyond which material does not return to the original length / shape / size when the load / force is removed [1] **B1**

	(C)							fore it l				S-S	ecuc	onai	area	а							A1	[2	21
		allo	w or	ne: I	maxii	mum s	stress	the w	/ire	е	is al	ble 1	o si	oqqu	ort /	bef	ore	t br	eak	S					
	(d)	(i)		9.5		from (be in p		c regio	n													- 7	М1 А1	[2	2]
		(ii)	only	y a	straiç	ht line	fror	n (0,0)	1														В1	['	1]
	(e)	(i)	sma	all c	hanç	e in fo	orce	roporti									irge	exte	ensi	on fo	or		B1 B1	[2	21
		(ii)	1. 2.	pla ret	astic turns	egion) ginal	its or length	956			49076		100 									B1 B1	[2	21
Q27.																		8	-						
5	(vhen ength		load	is rem	nove	d then	the	e	e wire	e / b	ody	obje	ect d	oes	not	retu	ırn i	to its	origin		nape B1		1]
	ı	(b) (i				orce / a 10 ⁶ ×		× 10 ⁻⁶	S =	= ;	340	(338	1.8)	N	1								C1 A1	[:	21
		(i) / (<i>A</i> × 10 ⁶) ×		/ (1.2	×	1	10 ¹¹)	= 1.	31 >	× 10	-3 m								C1 A1	ŗ	21
	(c) ti	he st	res	s is n	o long	er pr	oportio	ona	al	l to ti	ne e	xter	nsio	n								В1	[1]
Q28.						<	5,	0		•															
6	(a)	ext	tensi	on i	is pro	portio	nal te	o force	:/I	k	oad												В1	ľ,	1]
	(b)		= mg : (mg : 0.10	1 / k		.41 ×	9.81	/ 25 =	(4	4.	.02 /	25)										1	C1 W1 A0	[2	21
	(c)	(i)	wei	ght	and (reaction	on) fo	orce fro	om	n	sprir	ng (\	vhic	h is	equ	al t	o te	nsio	n in	sprii	ng)	В	1	[1]	
		(ii)		20.00		or 0.06		5 = ma (N)			or 0.:	22 >	25	= 5	.5							С	1		
			a=	(5.5	52 – (9.81)	/ 0.41			or 1. gives	5/0	.41	and		5 –	4.02)				C A		[3]	
	(d)	pote	entia	l er	ergy		38330-030	ain en es and	80000 . 88	00.0	75 BRW				4595					I		ВВ		[2]	