Q1.

2	2 (a	a)	(i)	distance from a (fixed) point			
			(ii)	(displacement from start is zero if) car at its starting position	В1		[3]
	(t	o)	(i)1	$v^2 = u^2 + 2as$ $28^2 = 2 \times a \times 450$ (use of component of 450 scores no marks) $a = 0.87 \text{ m s}^{-2}$ (-1 for 1 sig. fig. but once only in the question)			[2]
			(i)2	 v = u + at or any appropriate equation 28 = 0.87t or appropriate substitution t = 32 s 	C1 A1	ı	[2]
Q2.							
3	(a)	C 22	(i) (ii)	scatter of points (about the line) intercept (on t ² axis) (note that answers must relate to the graph)		B1 B1	[2]
	(b)) ((i)	gradient = $\Delta y/\Delta x = (100 - 0)/(10.0 - 0.6)$ gradient = 10.6 (cm s ⁻²) (allow ±0.2)		C1 A1	[2]
		((ii)	(Read points to within $\pm \frac{1}{2}$ square. Allow 1 mark for 11 cm s ⁻² i.e. 2 sig fig, -1. Answer of 10 scores 0/2 marks) $s = ut + \frac{1}{2}at^2$ so acceleration = 2 x gradient		B1 B1	
Q3.				acceleration = 0.212 m s ⁻²	tal	B1	[3] [7]
	(c)	hor	izont	al velocity = 18 m s ⁻¹	В1	13	[1]
	(C)	4	ŽUIIU	al velocity = 10 iii 5	ы	19	LIT
	(d)	(i)		ect shape of diagram o sides of right-angled triangle with correct orientation)	В1	Ĺ	
		(ii)		le = $41^{\circ} \rightarrow 48^{\circ}$ (allow trig. solution based on diagram) angle $38^{\circ} \rightarrow 41^{\circ}$ or $48^{\circ} \rightarrow 51^{\circ}$, allow 1 mark)	A2	2	[3]

Q4.

2	(a)	2.4s		A1	Ī	[1]
	(b)	reco heig (ans ansv	and (c), allow answers as (+) or (-) gnises distance travelled as area under graph line ht = (½ × 2.4 × 9.0) - (½ × 1.6 × 6.0) = 6.0 m (allow 6 m) wer 15.6 scores 2 marks wer 10.8 or 4.8 scores 1 mark)	C1 C1 A1	Ī	[3]
			mative solution: $s = ut - \frac{1}{2}at^2$ = $(9 \times 4) - \frac{1}{2} \times (9/2.4) \times 4^2$ = 6.0 m			
			wer 66 scores 2 marks wer 36 or 30 scores 1 mark)			
Q5.			20			
2	(a)	sca sca vec	lar		B1 B1 B1	[3
	(b)	(i)	1 gradient (of graph) is the speed/velocity (can be scored here or in 2) initial gradient is zero		B1 B1	[2
			2 gradient (of line/graph) becomes constant		В1	[1
		(ii)	speed = (2.8 ± 0.1) m s ⁻¹		A2	[2
		(iii)	curved line never below given line and starts from zero continuous curve with increasing gradient line never vertical or straight		B1 B1 B1	[3
Q6.			Rose			
2	(a)	cons	initial sp <mark>eed is zero</mark> stant acce <mark>leration</mark> ight line motion vitwo, one mark each)	.B2	j	[2]
	(b)	2000000	t = 0.40 s allow 1 SF or greater	01 A1 A1	1	[3]
			distance travelled by end of time interval = 90 cm	21		
			t = 0.43 s allow 2 SF or greater)1 \1		[3]
	(c)			//1 \1		[2]

Q7.

3 (a) evidence of use of area below the line distance = $39 \text{ m } (allow \pm 0.5m)$ A2 [3] $(if > \pm 0.5m \text{ but } \le 1.0 \text{ m, then allow 1 mark})$

Q8.

- 1 (a) scalar has only magnitude B1 vector has magnitude and direction B1 [2]
 - (b) kinetic energy, mass, power all three underlined B1 [1]
 - (c) (i) $s = ut + \frac{1}{2} at^2$ $15 = 0.5 \times 9.81 \times t^2$ T = 1.7 sC1
 A1 [2]

if g = 10 is used then -1 but only once on paper

(ii) vertical component v_v : $v_v^2 = u^2 + 2as = 0 + 2 \times 9.81 \times 15 \text{ or } v_v = u + at = 9.81 \times 1.7(5)$ $v_v = 17.16$ C1 resultant velocity: $v^2 = (17.16)^2 + (20)^2$ C1 $v = 26 \text{ ms}^{-1}$ A1 [3]

If u = 20 is used instead of u = 0 then 0/3Allow the solution using: initial (potential energy + kinetic energy) = final kinetic energy

(iii) distance is the actual path travelled displacement is the straight line distance between start and finish points (in that direction) / minimum distance B1 [2]

Q9.

```
2 (a) (i) base units of D:
                      force: kg m s<sup>-2</sup>
                                                                                                                         B1
                      radius: m
                                         velocity: ms-1
                                                                                                                         B1
                      base units of D: [F/(R \times v)] \text{ kg m s}^{-2}/(m \times m \text{ s}^{-1})
                                                                                                                         M1
                      = kg m^{-1} s^{-1}
                                                                                                                         A<sub>0</sub>
                                                                                                                                [3]
                (ii) 1. F = 6\pi \times D \times R \times v = [6\pi \times 6.6 \times 10^{-4} \times 1.5 \times 10^{-3} \times 3.7]
                                                   = 6.9 \times 10^{-5} \text{ N}
                                                                                                                                [1]
                                                                                                                         A1
                      2. mg - F = ma
                                                  hence a = g - [F / m]
                           m = \rho \times V = \rho \times 4/3 \pi R^3 = (1.4 \times 10^{-5})
                                                                                                                         C<sub>1</sub>
                           a = 9.81 - [6.9 \times 10^{-5}] / \rho \times 4/3 \pi \times (1.5 \times 10^{-3})^{3}
                                                                                                 (9.81 - 4.88)
                                                                                                                         M1
                           a = 4.9(3) \text{ m s}^{-2}
                                                                                                                         A1
                                                                                                                                [3]
           (b) (i) a = g at time t = 0
                                                                                                                         B1
                      a decreases (as time increases)
                                                                                                                         B1
                                                                                                                                 [3]
                      a goes to zero
                (ii) Correct shape below original line
                                                                                                                         M1
                      sketch goes to terminal velocity earlier
                                                                                                                                [2]
Q10.
          (a) (i) v = u + at
                                                                                                                        C1
                         = 4.23 + 9.81 \times 1.51
                                                                                                                       M1
                         = 19.0(4) \text{ m s}^{-1} (Allow 2 s.f.)
                                                                                                                        A0
                                                                                                                                   [2]
                     (Use of -g \max 1/2. Use of g = 10 \max 1/2. Allow use of 9.8. Allow 19 ms<sup>-1</sup>)
               (ii) either s = ut + \frac{1}{2} at^2 (or v^2 = u^2 + 2as etc.)
                                = 4.23 \times 1.51 + 0.5 \times 9.81 \times (1.51)^{2}
                                                                                                                        C1
                                 = 17.6m (or 17.5m)
                                                                                                                        A1
                                                                                                                                   [2]
                                 (Use of -g here wrong physics (0/2))
011.
   2 (a) (i) v^2 = u^2 + 2as
                        =(8.4)^2+2\times9.81\times5
                                                                                                                       C1
                        = 12.99 ms<sup>-1</sup> (allow 13 to 2 s.f. but not 12.9)
                                                                                                                        A1
                                                                                                                                   [2]
              (ii) t = (v - u) / a or s = ut + \frac{1}{2}at^2
                   = (12.99 - 8.4) / 9.81 \text{ or } 5 = 8.4t + \frac{1}{2} \times 9.81t^{2}
                                                                                                                       M1
                   t = 0.468s
                                                                                                                       A0
                                                                                                                                   [1]
        (b) reasonable shape
                                                                                                                       M1
              suitable scale
                                                                                                                        A1
              correctly plotted 1st and last points at (0,8.4) and (0.88 - 0.96,0)
```

Q12.

with non-vertical line at 0.47 s

A1

[3]

	2	(a)	(i)	1. distance of path / along line AB	B1	[1]
				shortest distance between AB / distance in straight line between AB or displacement from A to B	В1	[1]
			(ii)	acceleration = rate of change of velocity	A1	[1]
		(b)	(i)	distance = area under line or $(v/2)t$ or $s = (8.8)^2 / (2 \times 9.81)$ = 8.8 / 2 × 0.90 = 3.96 m or $s = 3.95$ m = 4(.0) m	C1 A1	[2]
			(ii)	acceleration = $(-4.4 - 8.8) / 0.50$ = $(-) 26(.4) \text{ m s}^{-2}$	C1 A1	[2]
		(c)	(i)	the accelerations are constant as straight lines	В1	
				the accelerations are the same as same gradient or no air resistance as acceleration is constant or change of speed in opposite directions (one speeds up one slows down)	B1	[2]
			(ii)	area under the lines represents height or KE at trampoline equals PE at maximum height	B1	
				second area is smaller / velocity after rebound smaller hence KE less	В1	
				hence less height means loss in potential energy	A0	[2]
Q13	•					
3	(a)	ĺ		$v^2 = u^2 + 2as$ OR use of triangle etc $4.0^2 = 2 \times 9.8 \times s$ OR $s = \frac{1}{2} \times 4.0 \times 0.4$	C 1	
				0.00	Al	[2]
	(b)		,	$\Delta p = m(v - u)$ OR $p = mv$	C1	
				$\Delta p = 0.045 (4.2 + 3.6)$ (2/4 only if speeds not added)		[4]
	(c)	44	,	any time between 0.14 s and 0.17 s	C1	
			*	= 2.5 N	Al	[2]

Q14.

1 (a) (i) the velocity is decreasing or force/acceleration is in negative (ii) [2] (b) e.g. separation of dots becomes constant/does not continue to (i) increase (must make a reference to the diagram).......B1 (ii)1 at constant speed, distance travelled in 0.1 s = 25 cm distance = $132 + (4 \times 25)$ [4] (c) $s = ut + \frac{1}{2}at^2$ $1.6 = \frac{1}{2} \times 9.8 \times t^2$ (allow $g = 10 \text{ m s}^{-2}$ [3] Q15. 3 (a) constant gradient/straight line B1 [1] (b) (i) 1.2 s A1 (ii) 4.4 s A1 [2] (c) either use of area under line or h = average speed x time C1 $h = \frac{1}{2} \times (4.4 - 1.2) \times 32$ C1 $= 51.2 \, \text{m}$ A1 [3] (allow 2/3 marks for determination of h = 44 m or h = 58.4 m allow 1/3 marks for answer 7.2 m) (d) $\Delta p = m\Delta v OR p = mv$ C1 $= 0.25 \times (28 + 12)$ C1 = 10 NsA1 [3] (answer 4 N s scores 2/3 marks)

3	(e)	(i)	total/s	um momentum before = total/sum momentum after		В1	
			in any	closed system	9	В1	[2]
		(ii)	either	the system is the ball and Earth	2) (1)	В1	
				momentum of Earth changes by same amount	9	В1	
				but in the opposite direction	3	В1	
			or	Ball is not an isolated system/there is a force on the ball (B1)			
				Gravitational force acts on the ball (B1)			
				causes change in momentum/law does not apply here (B1)			[3]
				(if explains in terms of air resistance, allow first mark only)			
Q16.				. 29			
3		(a)		change in velocity/time (taken)	В	1	[1]
		(b)		velocity is a vector/velocity has magnitude & direction direction changing so must be accelerating	B B		[2]
Q17.							
4		(a)	(i)	use of tangent at time $t = 0$ acceleration = 42 ± 4 cm s ⁻²	B1 A1	[2	21
			(ii)	use of area of loop distance = 0.031 ± 0.001 m allow 1 mark if 0.031 ± 0.002 m)	B1 B2	[S	-
Q18.							
2	(a)	••	dra ac	es a tangent (anywhere), not a single point aws tangent at correct position celeration = 1.7 ± 0.1 utside $1.6 \rightarrow 1.8$ but within $1.5 \rightarrow 1.9$, allow 1 mark)	E	21 31 N2	[4]
	(b)		ac	cause slope (of tangent of graph) is decreasing celeration is decreasing a air resistance increases (with speed)		//1 \1	[2]
				ngle of) slope of ramp decreases	E	31	[1]
	(c)			atter of points about <u>line</u> ercept / line does not go through origin		31 31	[1] [1]

Q19.

- 2 (a) 3.5 T B1 [1]
 - C1 (b) (i) distance = average speed × time (however expressed) [2] = 14 mA1
 - (ii) distance = $5.6 \times (T-5)$ (or 3.5T-14) A1 [1]
 - (c) 3.5T = 14 + 5.6(T 5)C1 T = 6.7 sA1 [2]
 - (d) (i) acceleration = $(5.6 / 5 =) 1.12 \text{ m s}^{-2}$ C1 force = ma C1 = 75 N A1 [3]
 - Albrido (ii) power = (force \times speed =) $\{75 + 23\} \times 4.5$ C1 [2] = 440 W (allow 1/2 for 234 W, 0/2 for 338 W or 104 W)

Q20.

- (a) (i) $v^2 = 2as$ $v^2 = 2 \times 0.85 \times 9.8 \times 12.8$ C1 $v = 14.6 \,\mathrm{m \, s^{-1}}$ **A1** [2]
 - (ii) time = 29.3 / 14.6C1 = 2.0 sA1 [2] (any acceleration scores 0 marks; allow 1 s.f.)
 - (b) either 60 km h⁻¹ = 16.7 m s⁻¹ 14.6 m s⁻¹ = 53 km h⁻¹ 22.1 m s⁻¹ = 79.6 km h⁻¹ M1 so driving within speed limit A1 but reaction time is too long / too slow **B1** [3]

Q21.

	2	(a)	(i)	(air) resistance increases with speedresultant / accelerating force decreases		[2]
			(ii)	either (air) resistance is zero or weight / gravitational force is only force	B1	[1]
		(b)	acc (for	of gradient of a tangent	M1 A2	[3]
		(c)	(i)	1 weight = $90 \times 9.8 = 880 \text{ N}$ (use of $q = 10 \text{ m s}^2$ then deduct mark but once only in the Paper)	A1	[1]
				2 accelerating force = 90 × 1.9 = 170 N(allow ecf)	A1	[1]
			(ii)	resistive force = 880 – 170 = 710 N	A1	[1]
Q22	2.			dide	[Tota	il: 9]
	3	(a)	(i)	speed = 4.0 m s ⁻¹ (allow 1 s.f.)		A1 [1]
			(ii)	$v^2 = 2gh$ = 2 × 9.8 × 1.96		
		(b)	spe at (rect basic shape with correct directions for vectors		A1 A1 [3]
	(c)	(i)	spe	her $v^2 = 2 \times 9.8 \times 0.98$ or $v = 6.2 / \sqrt{2}$ heed = 4.4 m s ⁻¹ how calculation of $t = 0.447$ s, then $v = 4.4$ m s ⁻¹)		
		(16)	1 r cha	momentum = mv enge in momentum = 0.034 (6.2 + 4.4) = 0.36 kg m s ⁻¹ = 0.36 kg m s ⁻¹ = 0.034 (6.2 - 4.4) loses last two marks) Force = $\Delta p / \Delta t$ (however expressed) = $\frac{0.36}{0.12}$	C1 A1	[3]
				= 3.0 N(allow 1 s.f.)	A1	[2]
					[Tota	al: 12]

Q23.

```
2 (a) (i) horizontal speed constant at 8.2 m s<sup>-1</sup>
                                                                                                                C1
                  vertical component of speed = 8.2 tan 60°
                                                                                                                M1
                                                    = 14.2 \,\mathrm{m \, s^{-1}}
                                                                                                                A0
                                                                                                                       [2]
            (ii) 14.2^2 = 2 \times 9.8 \times h (using g = 10 then -1)
                                                                                                                C<sub>1</sub>
                  vertical distance = 10.3 m
                                                                                                                A1
                                                                                                                       [2]
            (iii) time of descent = 14.2 / 9.8 = 1.45 s
                                                                                                                C1
                  x = 1.45 \times 8.2
                      = 11.9 m
                                                                                                                       [2]
                                                                                                                A1
        (b) (i) smooth path curved and above given path
                                                                                                                M1
                  hits ground at more acute angle
                                                                                                                A1
                                                                                                                       [2]
            (ii) smooth path curved and below given path
                                                                                                                M1
                  hits ground at steeper angle
                                                                                                                       [2]
Q24.
         (a) (i) V_H = 12.4 \cos 36^\circ (= 10.0 \text{ m s}^{-1})
                   distance = 10.0 × 0.17
                             = 1.7 \, \text{m}
                                                                                                              A1
                                                                                                                     [2]
             (ii) V_V = 12.4 \sin 36^\circ (= 7.29 \,\mathrm{m \, s}^{-1})
                                                                                                              C<sub>1</sub>
                   h = 7.29 \times 0.17 - \frac{1}{2} \times 9.81 \times 0.17^{2}
                                                                                                              C<sub>1</sub>
                     = 1.1 \, \text{m}
                                                                                                              A1
                                                                                                                     [3]
         (b) smooth curve with ball hitting wall below original
                                                                                                              B1
              smooth curve showing rebound to ground with correct reflection at wall
                                                                                                                     [2]
Q25.
         (a) acceptable straight line drawn (touching every point)
                                                                                                              B1
                                                                                                                     [1]
          (b) the distance fallen is not d
                                                                                                              C1
               d is the distance fallen plus the diameter of the ball
                                                                                                              A1
                                                                                                                     [2]
               ('d is not measured to the bottom of the ball' scores 2/2)
          (c) (i) diameter: allow 1.5 ± 0.5 cm (accept one SF)
                                                                                                              A1
                                                                                                                   [1]
                    no ecf from (a)
                                                                                                              C1
              (ii) gradient = 4.76, ± 0.1 with evidence that origin has not been used
                                                                                                              C1
                   gradient = g/2
                   g = 9.5 \,\mathrm{m \, s^{-2}}
                                                                                                                     [3]
                                                                                                              A1
```

Q26.

- 3 (a) (i) horizontal velocity = $15 \cos 60^{\circ} = 7.5 \,\mathrm{m\,s^{-1}}$ A1 [1]
 - (ii) vertical velocity = $15 \sin 60^\circ = 13 \text{ m s}^{-1}$ A1 [1]
 - (b) (i) $v^2 = u^2 + 2as$ $s = (13)^2 / (2 \times 9.81) = 8.6(1) \text{ m}$ A1 [1] using g = 10 then max. 1
 - (ii) t = 13/9.81 = 1.326 s or t = 9.95/7.5 = 1.327 s A1 [1]
 - (iii) velocity = 6.15 / 1.33 M1 = $4.6 \,\mathrm{ms}^{-1}$ A0 [1]
 - (c) (i) change in momentum = 60×10^{-3} [-4.6 7.5] C1 = (-)0.73Ns A1 [2]
 - (ii) final velocity / kinetic energy is less after the collision or relative speed of separation < relative speed of approach hence inelastic M1

 A0 [1]

Q27.

- 1 (a) average velocity = 540 / 30 C1 = 18 m s⁻¹ A1 [2]
 - (b) velocity zero at time t = 0 B1
 positive value and horizontal line for time t = 5 s to 35 s B1
 line / curve through v = 0 at t = 45 s to negative velocity
 negative horizontal line from 53 s with magnitude less than positive value and horizontal line to time = 100 s B1 [4]

Q28.

	2	(a)	1.	constant velocity / speed	В1	[1]
			2.	either constant / uniform decrease (in velocity/speed) or constant rate of decrease (in velocity/speed)	В1	[1]
		(b)	(i)	distance is area under graph for both stages stage 1: distance (18 × 0.65) = 11.7 (m)	C1	
				stage 2: distance = $(9 \times [3.5 - 0.65]) = 25.7$ (m) total distance = $37.(4)$ m (-1 for misreading graph) {for stage 2, allow calculation of acceleration (6.32ms^{-2}) and then $s = (18 \times 2.85) + \frac{1}{2} \times 6.32 (2.85)^2 = 25.7 \text{m}$ }	A1	[2]
			(ii)	either $F = ma$ or $E_K = \frac{1}{2}mv^2$ $a = (18 - 0)/(3.5 - 0.65)$ $E_K = \frac{1}{2} \times 1250 \times (18)^2$	C1 C1	
				$F = 1250 \times 6.3 = 7900 \text{N}$ or $F = \frac{1}{2} \times 1250 \times (18)^2 / 25.7 = 7900 \text{N}$ or initial momentum = 1250×18 $F = \text{change in momentum / time taken}$ $F = (1250 \times 18) / 2.85 = 7900$	A1 (C1) (C1) (A1)	[3]
		(c)	(i)	stage 1: either half / less distance as speed is half / less or half distance as the time is the same or sensible discussion of reaction time	B1	[1]
			(ii)	stage 2: either same acceleration and $s = v^2 / 2a$ or v^2 is $\frac{1}{4}$ $\frac{1}{4}$ of the distance	B1 B1	[2]
Q29. 1		al	othe	for D identified as $kg m s^{-2}$ her units shown: units for $A: m^2$ units for $V^2: m^2 s^{-2}$ units for $\rho: kg m^{-3}$	М1	
		С	 kg	kgms ⁻² q m ⁻³ m ² m ² s ⁻² with cancelling/simplification to give <i>C</i> no units	A1	[2]
	(b)	(i)	sti	traight line from (0,0) to (1,9.8) ± half a square	В1	[1]
		(iii)	1/2 V	$k mv^2 = mgh$ or using $v^2 = 2 as$ = $(2 \times 9.81 \times 1000)^{1/2} = 140 \text{ m s}^{-1}$	C1 A1	[2]
	(c)	(i)		reight = drag (D) (+ upthrust) Ilow <i>mg</i> or <i>W</i> for weight and <i>D</i> or expression for <i>D</i> for drag	В1	[1]
		(ii)	1.	$mg = 1.4 \times 10^{-5} \times 9.81$	C1	
				$1.4 \times 10^{-5} \times 9.81 = 0.5 \times 0.6 \times 1.2 \times 7.1 \times 10^{-6} \times v^2$	М1	
				$v = 7.33 \mathrm{m s^{-1}}$	Α0	[2]
			2.	 line from (0,0) correct curvature to a horizontal line at velocity of 7 m s⁻¹ line reaches 7 m s⁻¹ between 1.5 s and 3.5 s 	M1 A1	[2]

Q30.

(a) power is the rate of doing work or power = work done / time (taken) or power = energy transferred / time (taken) **B1** [1] **B1** (b) (i) as the speed increases drag / air resistance increases resultant force reduces hence acceleration is less **B1** constant speed when resultant force is zero **B1** [3] (allow one mark for speed increases and acceleration decreases) (ii) force from cyclist = drag force / resistive force **B1** $P = 12 \times 48$ M1 P = 576WA₀ [2] (iii) tangent drawn at speed = 8.0 m s⁻¹ M1 gradient values that show acceleration between 0.44 to 0.48 m s⁻² **A1** [2] (iv) F-R=maC1 $600/8 - R = 80 \times 0.5$ [using P = 576] 576 / 8 – $R = 80 \times 0.5$ C1 $R = 75 - 40 = 35 \,\mathrm{N}$ R = 72 - 40 = 32 N**A1** [3] (v) at 12 m s⁻¹ drag is 48 N, at 8 m s⁻¹ drag is 35 or 32 N R / v calculated as 4 and 4 or 4.4 and consistent response for whether R is proportional to v or not **B1** [1] Q31. 3 (a) (i) velocity = rate of change of displacement OR displacement change / time (taken) [1] A1 (ii) acceleration = rate of change of velocity OR change in velocity / time (taken) A1 [1] (b) (i) initial constant velocity as straight line / gradient constant **B1** middle section deceleration/ speed / velocity decreases / slowing down as gradient decreases **B1** last section lower velocity (than at start) as gradient (constant and) smaller **B1** [3] [special case: all three stages correct descriptions but no reasons 1/3] (iii) velocity = 45 / 1.5 = 30 m s⁻¹ A1 [1] (iii) velocity at $4.0 \,\mathrm{s}$ is $(122 - 98) / 2.0 = 12 \,\mathrm{(m \, s^{-1})}$ (allow 12 to 13) **B1** acceleration = $(12 - 30) / 2.5 = -7.2 \text{ m s}^{-2}$ (if answer not this value then comment needed to explain why, e.g. difficulty in drawing tangent) A1 [2] (iv) F = maC1 $= (-)1500 \times 7.2 = (-)11000 (10800) N$ [2] A1