Q1.

	6	(a)	(i)	curve is not smooth, fluctuations, etc	İ	
			(ii)	curve is same shape or same half-life, not affected by temperature, etc		[2]
		(b)	(i)	134B1		[1]
			(ii)	α -particle shown as 4_2 He or as ${}^4_2\alpha$	l	
				nucleon number of Po shown as 216	1	
						[3]
Q2 .	•					
8		(8	a)	position shown as $A = 227$, $Z = 91$	В1	[1]
		(I	o)	Pu shown as $A = 243$, $Z = 94$ D shown with $A = A_{Pu}$ and with $Z = (Z_{Pu} + 1)$	B1 B1	[2]
Q3.						
			5556			1000
	8	(a)		leus emits r β- particles and/or γ-rays A1		[2]
		(b)		ay unaffected by environmental changes n as temperature, pressure etc. (one e.g. is sufficient) M ² A1		[2]
		(c)		stant probability of decay (per unit time) of a nucleus not predict which particular nucleus will decay next B1		[2]
Q4.	•			Rom		
7	,	(a)	β(-de	cav)	В1	[1]
		•	•			
			either	cay) any two of Z, N and A do not change	B1	
			or or	it is loss of energy only it is an electromagnetic wave	В1	[2]
		- 0	diagra		(B2)	
			DO NO	ot give credit for a 'bald' α(-decay)		

Q5.

7	7 (a)	α-particle: either helium nucleus or contains 2 protons + 2 neutrons	i	
		or ⁴ ₂ He	E	31
		β-particle: either electron or $_{-1}^{0}$ e	E	31
		α speed < β speed (1)		
		α discrete values of speed/energy, β continuous spectrum (1) either α ionising power >> β ionising power		
		or α range << β range (1)		
		α positive, $β$ negative (only if first two B marks not scored) (1) $α$ mass > $β$ mass (only if first two B marks not scored) (1)		
		(any two sensible pairs of statements relevant to differences,		
		– do not allow statements relevant to only α or β , 1 each, max 2)	E	32 [4]
	(b)	(i) $^{236}_{92}U \rightarrow ^{232}_{90}Th$	N	<i>I</i> 11
	ili allejti	+ ⁴ He		A1 [2]
		21.0	0.	1-1
		(ii) 1. correct position for U at Z = 92, N = 145	A PARTY OF THE PAR	31
		correct position for Np relative to U i.e. Z + 1 and N - 1		31 [2]
		A C		
Q6.				
Qo.				
	(a) =	ata of deagy (activity (deagy (of gualaus) is not affected by subgraph fo	atara Lanuirari	
8		ate of decay / activity / decay (of nucleus) is not affected by external factorization and the surroundings	ctors / enviror B2	nment / [2]
		If states specific factor(s), rather than giving general statement above,	M7	202
	t	wo stated factors, but 1 mark only if one factor stated)		
	(b) (i) gamma / y	B1	[1]
	724			
	(1	i) alpha/α	B1	[1]
	(ii	i) gamma / y	B1	[1]
	(iv	r) beta / β	B1	[1]
07				
Q7.				
	4			

7		(a)			oms with same proton number/atomic numberoms contain different numbers of neutrons/different atomic mass	B1 B1	[2]
		(b)	(i)	92		A1	[1]
			(ii)	146		A1	[1]
		(c)	(i)	mas	ss = 238 × 1.66 × 10 ⁻²⁷ = 3.95 × 10 ⁻²⁵ kg	C1 A1	[2]
			(ii)		me = $\frac{4}{3}\pi \times (8.9 \times 10^{-15})^3$ (= 2.95 × 10 ⁻⁴²)	. C1	
				dens	sity = $(3.95 \times 10^{-25})/(2.95 \times 10^{-42})$ = 1.3×10^{17} kg m ⁻³	A1	[2]
		(d)			contains most of mass of atom	B1	
					uclear diameter/volume <u>very much</u> less than that of atom is mostly (empty) space	В1	[2]
Q8.							
	7	(a) (i) eiti or	her helium <u>nucleus</u> contains 2 protons and 2 neutrons B1		[1]
			(i	spe	n. range is a few cm in air/sheet of <u>thin</u> paper eed up to 0.1 c uses dense ionisation in air		
					sitively charged or deflected in magnetic or electric fields ny two, 1 each to max 2) B2		[2]
		(b) (B1		
				eiti	her ¦p or ¹H B1		[2]
			(i	i) 1	initially, α -particle must have some kinetic energy B1		[1]
			(i	i) 2	1.1 MeV = 1.1 × 1.6 × 10 ⁻¹³ = 1.76 × 10 ⁻¹³ J		
		4		7,	$E_{\rm k} = \frac{1}{2}mv^2$		
					$1.76 \times 10^{-13} = \frac{1}{2} \times 4 \times 1.66 \times 10^{-27} \times v^2$		[4]
				7	use of 1.67 × 10 ⁻²⁷ kg for mass is a maximum of 3/4		1.9

Q9.

7	(a)	m	oither helium nucleus		
•	(a)	(I)	either helium nucleus or particle containing two protons and two neutrons	B1	[1]
		(ii)	allow any value between 1 cm and 10 cm	B1	[1]
	(b)	(i)	energy = $(8.5 \times 10^{-13})/(1.6 \times 10^{-13})$ = 5.3MeV	M1 A0	[1]
		(ii)	number = $(5.3 \times 10^6)/31$ = 1.7×10^5 (allow 2 s.f. only)	C1 A1	[2]
		(iii)	number per unit length = (1.7×10^5) /(a)(ii) correct numerical value correct unit	A1 B1	[2]
Q10.	ī			0	
7	(a) (i)	2 protons and 2 neutrons e.g. positively charged 2e mass 4u	B1	[1]
		(ii)	e.g. positively charged 2e mass 4u constant energy absorbed by thin paper or few cm of air (3 cm → 8 cm) (not low penetration) highly ionizing deflected in electric/magnetic fields (One mark for each property, max 2)	B2	[2]
	(b) m	ass-energy is conserved	B1	
	-	di	fference in mass 'changed' into a form of energy	B1	
			nergy in the form of kinetic energy of the products / γ-radiation notons / e.m. radiation	В1	[3]
Q11.	•		Rom		
7	(a	Y	Y = 1 and X = 0 = 2 = 55	A1 A1 A1	[1] [1] [1]
	(b	120 nas	oplanation in terms of mass – energy conservation	B1	
			nergy released as gamma or photons or kinetic energy of products or management and action	В1	[2]

Q12.

(a) thin paper reduces count rate hence α addition of 1 cm of aluminium causes little more count rate reduction hence only other radiation is γ
 (b) magnetic field perpendicular to direction of radiation look for a count rate in expected direction / area if there were negatively charged radiation present. If no count rate recorded then β not present.

Q13.

7 (a) the majority/most went straight through or were deviated by small angles

a very small proportion/a few were deviated by large angles small angles described as < 10° and large angles described as >90°

(b) most of the atom is empty space/nucleus very small compared with atom mass and charge concentrated in (very small) nucleus

correct links made with statements in (a)

B1

[3]

Q14.

7 (a) (i) W = 206 and X = 82
Y = 4 and Z = 2
A1
[2]
(ii) mass-energy is conserved
mass on rhs is less because energy is released
B1
[2]
(b) not affected by external conditions/factors/environment
or two examples temperature and pressure

Q15.

7	(a)	(i)	nucleus contains 92 protons nucleus contains 143 neutrons (missing 'nucleus' 1/2) outside / around nucleus 92 electrons most of atom is empty space / mass concentrated in nucleus total charge is zero diameter of atom ~ 10 ⁻¹⁰ m or size of nucleus ~ 10 ⁻¹⁵ m	B1 B1 (B1) (B1) (B1) (B1)	
			any two of (B1) marks		[4]
		(ii)	nucleus has same number / 92 protons nuclei have 143 and 146 neutrons (missing 'nucleus' 1/2)	B1 B1	[2]
	(b)	(i)	Y = 35 Z = 85	A1 A1	[2]
		(ii)	mass-energy is conserved in the reaction	B1	
			mass on rhs of reaction is less so energy is released explained in terms of $E = mc^2$	B1	[2]
Q16.					
8	(a)		shows nucleon number as 220 shows proton number as 87	B1 B1	[2]
	(b)		shows products as 4_2 He OR $^4_2\alpha$ and $^{216}_{85}$ At(allow e.c.f. from (a))	B1 B1	[2]
Q17.					
6	(a)	(i)	26 protonsB1		
		(ii)	30 neutrons B1	[2]	
	(b)	(i)	mass = 56 x 1.66 x 10 ⁻²⁷		
			(allow x 1.67 x 10 ⁻²⁷ but 0/2 for use of 26 or 30) = 9.3 x 10 ⁻²⁶ kg		
		(iii)	density = mass/volume where volume = $4/3 \times \pi \times r^3$	[4]	
	(c)		nucleus occupies only very small fraction of volume of atom or 'lot of empty space inside atom'		
			(do not allow spacing between atoms) any further good physics e.g. nuclear material is very dense B1	[2]	

Q18.

7	(a) (i) nucleus is small	М1		
		in comparison to size of atom	A 1	[2]	
	(1	i) nucleus is massive/heavy/dense	В1		
		and charged (allow to be scored in (i) or (ii))	В1	[2]	
	(b) (i) symmetrical path and deviation correct w.r.t. position of nucleus	В1		
		deviation less than in path AB	В1		
	(1	i) deviation > 90° and in correct direction	В1	[3]	
Q19.			>.		
7	(a)	most α-particles deviated through small angles		В1	
		(accept 'undeviated') few α-particles deviated through angles greater than 90°		В1	[2]
	(b)	(i) allow $10^{-9} \text{ m} \rightarrow 10^{-11} \text{ m}$		В1	[1]
		(ii) allow 10^{-13} m $\rightarrow 10^{-15}$ m (if (i) and (ii) out of range but (ii) = 10^{-4} (i), then allow 1 mark) (if no units or wrong units but (ii) = 10^{-4} (i), then allow 1 mark)		В1	[1]
		Co			
Q20.					
8	(a)	nucleus has constant probability of decay per unit time / in a given time (allow 1 mark for 'cannot predict which nucleus will decay next')	M1 A1		[2]
	(b)	(i) count rate / activity decreases	B1		[1]
	4	(ii) count rate fluctuates / is not smooth	В1		[1]
	(c)	either the (decay) curves are similar / same or curves indicate same half-life	В1		[1]

Q21.

7	(a)	deviation shown correctly	.B1	[1]
	(b)	smaller deviation (not zero deviation)		[2]
	(c)	the nucleus is (very) small		[2]
	(d)	deviation depends on charge on the nucleus / N / electrostatic repulsionsame charge so no change in deviation		[2]
		ļ	[Tota	d: 7]
Q22.		.0.		
7	(a)		M1 A1	[2]
	(b)	(i) decay is not affected by environmental factors (allow two named factors)	В1	[1]
		(ii) either time of decay (of a nucleus) cannot be predicted or nucleus has constant probability in a given time	В1	[1]
	(c)	¹⁸⁵ ₇₅ Re		
		either 0 e or 0 β	В1	[2]
Q23.			Total	: 6]
7	(a)		VI1 A1	[2]
	(b)	nucleon number conserved	31 31 31	[3]
			A1 A1	[1] [1]

Q24.

7	(a)	(i)	$\frac{most}{\alpha}$ α -particles were deviated through small angles (allow 1 mark for 'straight through' / undeviated)	B2	[2]
		(ii)	small fraction of $\alpha\text{-particles}$ deviated through large angles greater than 90° (allow rebound back)	M1 A1	[2]
	(b)		β-particles have a range of energies β-particles deviated by (orbital) electrons β-particle has (very) small mass (any two sensible suggestions, 1 each, max 2) not allow β-particles have negative charge or β-particles have high speed	B2	[2]
		DU	not allow p-particles have negative charge or p-particles have high speed		
Q25 9			cleus emits α -particles or β -particles and/or γ -radiation form a different / more stable nucleus	B1 B1	[2]
	(b) (i)	fluctuations in count rate (not 'count rate is not constant')	В1	[1]
		(ii)	no effect	В1	[1]
		(iii)	if the source is an α-emitter either α-particles stopped within source (and gain electrons)	В1	
			or α-particles are helium <u>nuclei</u>	В1	[2]
Q26	-		allow 1/2 for 'parent nucleus gives off radiation to form daughter nucleus'		
	7		nuclei with the same number of protons and a different number of neutrons	B1 B1	[2]
		(b)	(i) (mass + energy) (taken together) is conserved momentum is conserved one point required max. 1	(B1) (B1) B1	[1]
		(ii) $a = 1$ and $b = 0$ x = 56 y = 92	B1 B1 B1	[3]
			proton number = 90 nucleon number = 235	B1 B1	[2]

Q27.

7 (a) (i) the half life / count rate / rate of decay / activity is the same no matter what external factors / environmental factors or two named factors such as temperature and pressure changes are applied **B1** [1] (ii) the observations of the count rate / count rate / rate of decay / activity / radioactivity during decay shows variations / fluctuations В1 [1] (b) property α-particle β-particle y-radiation charge (+)2e-е 0 9.11 × 10⁻³¹ kg 0 44 mass speed 0.01 to 0.1 c up to 0.99 c C [3] one mark for each correct line (c) collision with molecules **B1** causes ionisation (of the molecule) / electron is removed [2] Q28. (a) (i) greater deflection M0 greater electric field / force on α-particle A1 [1] (ii) greater deflection M0 greater electric field / force on α-particle A1 [1] deflections in opposite directions M1 (b) (i) either because oppositely charged A1 β less deflection (M1) or β has smaller charge (A1)[2] (ii) α smaller deflection M1 because larger mass A1 [2] (iii) β less deflection because higher speed **B1** [1] (c) either F = ma and F = Eqor a = Eq / mC1 ratio = either $(2 \times 1.6 \times 10^{-19}) \times (9.11 \times 10^{-31})$ $(1.6 \times 10^{-19}) \times 4 \times (1.67 \times 10^{-27})$ [2e × 1 / 2000 u] / [e × 4u] C1

Q29.

A1

[3]

ratio = 1/4000 or 2.5×10^{-4} or 2.7×10^{-4}

6	(a)	(a) 92 protons in the nucleus and 92 electrons around nucleus 143 neutrons (in the nucleus)						B1 B1	[2]
	(b)	(i)	α-particle travels	s short distance in a	ir			В1	[1]
		(ii)	majority pass the	ortion in backwards rough with no /smal lass is in very small	l deflections		l or most of	B1 B1 atom B1	is [3]
	(c)	n/i	Q/t $t = (1.5 \times 10^{-12})/t$ $t = 4.7 \times 10^{6} \text{ s}^{-1}$	(2 × 1.6 × 10 ⁻¹⁹)				C1 C1 A1	[3]
Q30.							DA		
7	(a)	Ān	e + ${}_{2}^{3}$ He $\rightarrow {}_{2}^{4}$ He umbers correct umbers correct			dis	9	B1 B1	[2]
	(b)	the	50~13.00 일 : 10.00 일 (1) : 10.00 TO 10.00 TO 10.00 TO 10.00 TO 10.00	rotons e 1 neutron and tw mber of protons bu		per of neutrons']		B1 B1	[2]
	(c)	ene	ton number and n ergy – mass mentum	neutron number	Co			B1 B1 B1	[2]
	(d)	(i)	γ radiation	96				В1	[1]
		(ii)	product(s) must	have kinetic energ	v			В1	[1]
	(e)	60	8MeV = 13.8 × 1. = n × 13.8 × 1.6 × 2.7(2) × 10 ¹³ s ⁻¹	6 × 10 ⁻¹⁹ × 10 ⁶ (= 2 × 10 ⁻¹³	2.208 × 10 ⁻¹²)			C1 A1	[2]

Q31.

6 (a) (i) electron B1 [1] (ii) any two: can be deflected by electric and magnetic fields or negatively charged / absorbed by few (1 - 4) mm of aluminum / 0.5 to 2 m or metres for range in air / speed up to 0.99c / range of speeds / energies B2 [2] (iii) decay occurs and cannot be affected by external / environmental factors or two stated factors such as chemical / pressure / temperature / humidity [1] **B1** (b) 3 and 0 for superscript numbers **B1** 2 and -1 for subscript numbers **B1** [2] (c) energy = $5.7 \times 10^3 \times 1.6 \times 10^{-19}$ (= 9.12×10^{-16} J) $v^2 = \frac{2 \times 9.12 \times 10^{-16}}{}$ $v = 4.5 \times 10^7 \,\mathrm{m\,s^{-1}}$ [3] (d) both have 1 proton and 1 electron **B1** 1 neutron in hydrogen-2 and 2 neutrons in hydrogen-3 [2] **B1** (special case: for one mark 'same number of protons / atomic number different number of neutrons') Q32. (a) (i) the direction of the fields is the same OR fields are uniform OR constant 7 electric field strength OR E = V / d with symbols explained **B1** [1] (ii) reduce p.d. across plates **B1** increase separation of plates **B1** [2] (iii) α opposite charge to β (as deflection in opposite direction) **B1** β has a range of velocities OR energies (as different deflections) and α all have same velocity OR energy (as constant deflection) **B1**

α are more massive (as deflection is less for greater field strength)

(b) W = 234 and X = 90

Y = 4 and Z = 2

(c) A = 32 and B = 16 and C = 0 and D = -1

B1

B1

B1

B1

[3]

[2]

[1]