Q1.

4	(a	1)		e.g. both transverse/longitudinal/same type meet at a point,			
				same direction of polarisation, etc1 each, max 3(allow 1 mark for any condition for observable interference)	. B3	[3]	
	(b)	(i)1	allow 0.3 mm \rightarrow 3 mm	. B1		
			(i)2	λ = ax/D (allow any subject)	. B1		
			(ii)1	separation increasedless bright			
			(ii)2	separation increasedless bright	2041002		
			(ii)3	separation unchangedfringes brighter			
				further detail, i.e quantitive aspect in (ii)1 or (ii)2(in (b), do not allow e.c.f. from (b)(i)2)		[7]	
Q2.							
	2	(a)	(i)	$\lambda = 0.6 \text{ m}$	IUlai	В1	[0]
			(ii)	frequency (= v/λ) = 330/0.60 = 550 Hz (use of c = 3 x 10 ⁸ ms ⁻¹ scores no marks)		C1 A1	[3]
		(b)		amplitude shown as greater than a but less than 2a and constant correct phase (wave to be at least three half-periods, otherwise -1 overall)		B1 B1	[2]
Q3.				200	Total		[5]
6	(a))		When two (or more) waves meet (not 'superpose' or 'interfere')		B1	[v]
				resultant displacement is the sum of individual (displacements)		M1 A1	[3]
	(b)	**	(i) (ii)	any correct line through points of intersection of crests any correct line through intersections of a crest and a trough		B1 B1	[2]
	(c)		(i)	$\lambda = ax/D$ OR $\lambda = a\sin \theta$ and $\theta = x/D$ 650 x 10 ⁻⁹ = $(a \times 0.70 \times 10^{-3})/1.2$ $a = 1.1 \times 10^{-3}$ m		C1 C1 A1	[3]
				no change brighter		B1 B1	
				no change (accept stay/remain dark)	Total	B1	[3] [11]

Q4.

5 (a) When a wave (front) is incident on an edge or an obstacle/slit/gap M1 Wave 'bends' into the geometrical shadow/changes direction/spreads A1 [2] **(b) (i)** $d = 1/(750 \times 10^3)$ C1 $= 1.33 \times 10^{-6} \text{ m}$ A1 [2] (ii) $1.33 \times 10^{-6} \times \sin 90^{\circ} = n \times 590 \times 10^{-9}$ C1 n = 2 (must be an integer) A1 [2] (iii) formula assumes no path difference of light before entering grating or there is a path difference before the grating В1 [1] (c) e.g. lines further apart in second order lines fainter in second order (allow any sensible difference: 1 each, max 2) [2] (if differences stated but without reference to the orders, max 1 mark) Q5. (a) (i) correct shape drawn **B1** [1] (ii) two nodes marked correctly **B1** [1] (b) $1/2\lambda = 0.324 \text{ m}$ C₁ $v = f\lambda$ C1 $=512\times2\times0.324$ $= 332 \text{ m s}^{-1}$ [3] A1 (c) $1/4\lambda = 16.2$ cm C1 either antinode is 0.5 cm above top of tube or antinode is 16.2 cm above water surface A1 [2] Q6.

5	(a)	(i)	vibrations (in plane) normal to direction of energy propagation	B1	[1]
		(ii)	vibrations in one direction (normal to direction of propagation)	B1	[1]
		525 31923	at (displacement) nodes/where there are heaps, amplitude of vibration is zero/minimum dust is pushed to / settles at (displacement) nodes	B1 B1 B1 C1	[3]
				C1	
				A1	[3]
Q 7.	(c)	eith or	ionary wave formed by interference / superposition / overlap of er wave travelling down tube and its reflection two waves of same (type and) frequency travelling in opposite directions ed is the speed of the incident / reflected waves	B1 B1 B1	[3]
5	(a)	(i)	frequency: number of oscillations per unit time of the source / of a point on the wave	M1 A1	
		(ii)	speed: speed at which energy is transferred / speed of wavefront	В1	[1]
	(b) (i)	does not transfer energy (along the wave)	В1	[1]
		(ii)	position (along wave) where amplitude of vibration is a maximum	В1	[1]
		(iii)	all three positions marked	В1	[1]
	(c)	V	evelength = $2 \times 17.8 = 35.6 \text{ cm}$ = $f\lambda$	C1 C1	
	•	44	= 125×0.356 = 44.5 m s^{-1} $.5^2 = 4.00 / m$ = $2.0 \times 10^{-3} \text{ kg m}^{-1}$	C1 C1 A1	[5]
Q8.					
5	(a)	or p eith	er phase difference is π rad / 180° ath difference (between waves from S ₁ and S ₂) is $\frac{1}{2}\lambda/(n+\frac{1}{2})\lambda$. B1 er same amplitude / intensity at M atio of amplitudes is 1.28 / ratio of intensities is 1.28²		[2]
	(b)	wav min	n difference between waves from S_1 and $S_2=28$ cm		[4]

Q9.

5	(a)	constant phase difference	B1	[1]
	(b)	allow wavelength estimate 750 nm \rightarrow 550 nm separation = $\lambda D / x$ = $(650 \times 10^{-9} \times 2.4) / (0.86 \times 10^{-3})$ = 1.8 mm (allow 2 marks from inappropriate estimate if answer is in range $10 \mathrm{cm} \rightarrow 0.1 \mathrm{mm}$)		[3]
	(c)	no longer complete destructive interference / amplitudes no longer completely cancel so dark fringes are lighter	M1 A1	[2]
Q10.				
4	(a)	when a <u>wave</u> (front) passes by/incident on an edge/slit	M1 . A1	[2]
	(b)	$\tan \theta = \frac{38}{165}$ $\theta = 13^{\circ}$ $d \sin \theta = n\lambda$ $d = 2.82 \times 10^{-6}$ number = $(1/d =) 3.6 \times 10^{5}$. C1	[4]
	(c)	P remains in same position X and Y rotate through 90°		[2]
	(d)	either screen not parallel to grating or grating not normal to (incident) light	. B1	[1]
Q11.				
4	(a)	e.g. no energy transfer amplitude varies along its length/nodes <u>and</u> antinodes neighbouring points (in inter-nodal loop) vibrate in phase, etc.		(O)

	(b)	(i)	$\lambda = (330 \times 10^2)/550$ $\lambda = 60 \text{ cm}$	M1 A0	[1]
		(ii)	node labelled at piston antinode labelled at open end of tube additional node and antinode in correct positions along tube	B1 B1 B1	[3]
	(c)		owest frequency, length = λ/4	C1	
		frec	iuency = 330/1.8	C1 A1	[3]
Q12.					
5	(a)) (i	 1 number of oscillations per unit time (not per second) 2 nλ 	B1 A1	[1] [1]
		(ii) $v = \text{distance} / \text{time} = n\lambda/t$ $n/t = f$ hence $v = f\lambda$ or f oscillations per unit time so $f\lambda$ is distance per unit time	M1 A1 M1	roı
	(b) (i	distance per unit time is v so $v = f\lambda$ 1.0 period is $3 \times 2 = 6.0$ ms	A1 C1	[2]
	•		frequency = $1/(6 \times 10^{-3}) = 170 \text{ Hz}$	A1	[2]
Q13.		(ii) wave (with approx. same amplitude and) with correct phase difference	B1	[1]
7	(a)		en waves overlap / meet, (resultant) displacement is the sum of the individual placements	ual B1	[1]
	(b)	(i)	two (ball-type) dippers connected to the same vibrating source /motor or	(M1) (A1)	
	,	**	one wave source described with two slits	(M1) (A1)	[2]
		(ii)	lamp with viewing screen on opposite side of tank means of freezing picture e.g. strobe	B1 B1	[2]
	(c)	(i)	two correct lines labelled X	В1	[1]
		(ii)	correct line labelled N	B1	[1]

Q14.

- [1] 6 (a) (i) to produce coherent sources or constant phase difference B1 (ii) 1. $360^{\circ}/2\pi$ rad allow n × 360° or n × 2π (unit missing -1) **B1** [1] **2.** $180^{\circ} / \pi \text{ rad}$ allow $(n \times 360^{\circ}) - 180^{\circ} \text{ or } (n \times 2\pi) - \pi$ **B1** [1] (iii) 1. waves overlap / meet **B1** (resultant) displacement is sum of displacements of each wave **B1** [2] at P crest on trough (OWTTE) **B1** [1] (b) $\lambda = ax/D$ C1 $= 2 \times 2.3 \times 10^{-3} \times 0.25 \times 10^{-3} / 1.8$ C1 = 639 nmA1 [3] Q15. (a) (i) amplitude = 7.6 mm [1] allow 7.5 mm
- - (ii) 180° / π rad [1]
 - (iii) $v = f \times \lambda$ $= 15 \times 0.8$ C1 = 12 ms⁻¹ A1 [2]
 - (b) correct sketch with peak moved to the right **B1** curve moved by the correct phase angle / time period of 0.25 T **B1** [2]
 - (c) (i) zero (rad) A1 [1]
 - (ii) antinode maximum amplitude, node zero amplitude / displacement A1 [1]
 - (iii) 3 A1 [1]
 - (iv) horizontal line through central section of wave B1 [1]

Q16.

- (a) (i) coherence: constant phase difference M1 between (two) waves A1 [2]
 - (ii) path difference is either λ or $n\lambda$ or phase difference is 360° or $n \times 360$ ° or $n2\pi$ rad **B1** [1]

	(i	path difference is either $\lambda/2$ or $(n + \frac{1}{2}) \lambda$ or phase difference is odd multiple of either 180° or π rad	В1	[1]
				1 13
	(i	iv) $W = \lambda D/a$	C1	
		= $[630 \times 10^{-9} \times 1.5] / 0.45 \times 10^{-3}$ = 2.1×10^{-3} m	C1 A1	[3]
		-2.1 × 10 III	AI	101
	(b)	no change to dark fringes	В1	
		no change to separation/fringe width	B1	
		<u>bright</u> fringes are brighter/lighter/more intense	B1	[3]
Q17.				
6	(a)	two waves travelling (along the same line) in opposite directions overlap/meet	<u>/</u> 1	
		same frequency / wavelength	1	
		resultant displacement is the sum of displacements of each wave / produces nodes and antinodes	31	[3]
	(b)	apparatus: source of sound + detector + reflection system	31	
		adjustment to apparatus to set up standing waves – how recognised	31	
		measurements made to obtain wavelength	31	[3]
	(c)	(i) at least two nodes and two antinodes	A 1	[1]
		(ii) node to node = $\lambda / 2 = 34 \text{ cm}$ (allow 33 to 35 cm)	21	
			21	701
		f = 340 / 0.68 = 500 (490 to 520) Hz	A1	[3]
Q18.	Ī			
6	(a	 (i) diffraction bending/spreading of light at edge/slit this occurs at each slit 	B1 B1	[2]
		(ii) constant phase difference between each of the waves	В1	[1]
		(iii) (when the waves meet) the resultant displacement is the sum of the	ho	•
		displacements of each wave	B1	[1]

	(b	$d\sin\theta = n\lambda$		
		$n = d / \lambda = 1 / 450 \times 103 \times 630 \times 10^{-9}$	C1	
		n = 3.52 hence number of orders = 3	M1 A1	[3]
		Herice Humber of Orders – 3	Al	131
	(c	λ blue is less than λ red	М1	
		more orders seen	A1	re:
		each order is at a smaller angle than for the equivalent red	A1	[3]

Q19.

5	(a)		ves overlap / meet / superpose	(B1)	
			herence / constant phase difference (not constant λ or frequency)	(B1)	
			h difference = 0, λ , 2λ or phase difference = 0, 2π , 4π	(B1)	
		sar	ne direction of polarisation/unpolarised	(B1)	
				max. 3	[3]
		192			
	(b)		v/f	C1	
			12 × 10 ⁹ Hz	C1	
			$3 \times 10^{8} / 12 \times 10^{9}$ (any subject)	M1	
		=	0.025 m	A0	[3]
	(c)	ma	ximum at P	В1	
	(0)		veral minima or maxima between O and P	B1	
			naxima / 6 minima between O and P	٥,	
			7 maxima / 6 minima including O and P	B1	[3]
					101
	(d)	slits	s made narrower	B1	
		slits	s put closer together	B1	[2]
			not just 'make slits smaller')		
		Allo	ow tilting the slits M1 and explanation of axes of rotation A1		
020			NO.		
Q20.					
-				0.4	
5	(a)	(1)	$V = f\lambda$	C1	r01
			$\lambda = 40 / 50 = 0.8(0) \text{ m}$	A1	[2]
		/iii	waves (travel along string and) reflect at Q / wall / fixed end	В1	
		(11)	incident and reflected waves interfere / superpose	B1	[2]
			incluent and relieued waves interiere? Superpose	υ.	141
	(b)	(i)	nodes labelled at P, Q and the two points at zero displacement	B1	
		0.000	antinodes labelled at the three points of maximum displacement	B1	[2]
		(ii)	$(1.5\lambda \text{ for PQ hence PQ} = 0.8 \times 1.5) = 1.2 \text{ m}$	A1	[1]
		(iii)	$T = 1/f = \frac{1}{50} = 20 \text{ms}$	C1	
			5 ms is ¼ of cycle	A1	12.22E
			horizontal line through PQ drawn on Fig. 5.2	B1	[3]
		44			
024					
Q21.			•		

5	(a)		en waves overlap / meet resultant displacements of the waves	B1 B1	[2]
	(b)	(i)	1. phase difference = $180^{\circ} / (n + \frac{1}{2}) 360^{\circ}$ (allow in rad)	В1	[1]
			2. phase difference = 0 / 360 ° / (n360 °) (allow in rad)	B1	[1]
		(ii)	$v = f\lambda$ $\lambda = 320 / 400 = 0.80 \text{ m}$	C1 A1	[2]
		(iii)	hence minimum	M1	
Q22	2.		or maximum if phase change at P is suggested	A1	[2]
	5 (2	1)	displacement & direction of energy travel normal to one another B1	[1]	
	(1	b) (i	phase angle of 60° correct (need to see 1½ wavelengths) B1 lags behind T ₁ B1	[2]	
		(ii)	waves must be in same place (at same time)	[2]	
000		(iii	11½4	[3]	
Q23 4	s. (a)	(i)	1 amplitude = 0.4(0) mm		
		(i)	wavelength = 7.5 x 10 ⁻² m (1 sig. fig1 unless already penalised)		
		→ (i)	3 period = 0.225 ms		
		(i)	4 $v = f\lambda$ = 4400 x 7.5 x 10 ⁻²	0.000	[6]

a)	(ii)	reasonable shape, same amplitude and wavelength double	D I		[1]
b)	(i)	1.7(2) µm	A1		
	(ii)				
	(iii)				[5]
(a)	all sam	e speed in a vacuum (allow medium)/all travel in a vacuum	(1)		
	transve	erse/can be polarised	(1)		
	underg	o diffraction/interference/superposition	(1)		
	can be	reflected/refracted	(1)		
	show p	properties of particles	(1)		
	oscillat	ing electric and magnetic fields	(1)		
	transfe	r energy/progressive	(1)		
	not affe	ected by electric and magnetic fields	(1)		
	(allow a	any three, 1 each)		В3	[3]
(b)	495 nm	n = 495 x 10 ⁻⁹ m		C1	
	numbe	$r = 1/(495 \times 10^{-9}) = 2.02 \times 10^{6}$		A 1	[2]
	(allow	2 or more significant figures)			
(c)	(i) allo	$10^{-7} \rightarrow 10^{-11} \mathrm{m}$		В1	
•	(ii) allo	$10^{-3} \rightarrow 10^{-6} \mathrm{m}$		В1	[2]
	(a)	(iii) (iii) (a) all same transverunderg can be show proceed transference allow (allow) (b) 495 nm number (allow) (c) (i) allow)	(ii) d sin2 = $n\lambda$ (double slit formula scores 0/2) 1.72 x 10 ⁻⁶ x sin 2 = 590 x 10 ⁻⁹	 (ii) d sin2 = nλ (double slit formula scores 0/2) 1.72 x 10⁻⁶ x sin 2 = 590 x 10⁻⁹	(ii) $d \sin 2 = n\lambda$ (double slit formula scores $0/2$) $1.72 \times 10^{-6} \times \sin 2 = 590 \times 10^{-9}$

Q25.

(a) wavelength = 1.50 m B1 [1] (b) $v = f \lambda$ C1 speed = 540 m s⁻¹ A1 [2] (c) (progressive) wave reflected at the (fixed) ends **B1** wave is formed by superposition of (two travelling) waves **B1** this quantity is the speed of the travelling wave B1 [3] Q26. 5 similarity: e.g. same wavelength/frequency/period, constant (a) phase difference **B**1 difference: e.g. different amplitude/phase [2] (do not allow a reference to phase for both similarity and difference) (b) constant phase difference so coherent **B1** [1] (i) intensity ∞ amplitude2 C1 (c) $I \propto 3^2$ and $I_B \propto 2^2$ leading to M1 $I_{\rm B} = \frac{4}{9}I$ [2] A0 resultant amplitude = 1.0 x (ii) C1 resultant intensity A1 [2] (d) (i) displacement = 0 **B**1 [1] $x_A = -2.6 \times 10^{-4}$ cm and $x_B = +1.7 \times 10^{-4}$ cm C1 (ii) allow $\pm 0.5 \times 10^{-4}$ cm) resultant displacement = (-) 0.9 × 10⁻⁴ cm A1 [2] Q27. when two (or more) waves meet (at a point) M1 4 (a) (i) there is a change in overall intensity / displacement A1 (ii) constant phase difference (between waves) **B1** [3] (b) (i) $d\sin\theta = n\lambda$ **B1** $(10^{-3} / 550) \sin 90 = n \times 644 \times 10^{-9}$ C1 n = 2.8C₁ so two orders [4] A1 (power-of-ten error giving 2800 orders, allow 1/3 only for calculation of n) 1. $d\sin\theta = n\lambda$ (either here or in (i) – not both) (ii) θ is greater so λ is greater **B1** [1] 2. when n is larger, $\Delta\theta$ is larger M1 so greater in second order A1 [2]

Q28.

5	(a)			squares and 7.5 squares on 3 peaks this range but between 6.0 and 8.0 squares)	B2		
				ad/lag, look at x-axis only and allow ±½ square	В1	[3]	
	(b)	540	$\lambda = ax / D$ $540 \times 10^{-9} = (0.700 \times 10^{-3} x) / 2.75$ x = 2.12 mm				
	6270	1804			A1	[3]	
	(C)	50.5	same separation bright areas brighte dark areas, no char		В1		
			- No. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	ater' for 1 mark if dark/light areas not discussed)			
			[경영] - 1명 기업명 - 지난 경기 및 경기 및 경기 및 경기	ved (1) any two, 1 each	B2	[3]	
				.0			
		(ii)	smaller separation on no change in bright		B1 B1	[2]	
Q29.				VIO.			
6	(8	be		edge / aperture / slit /(edge of) obstacle of wave (into geometrical shadow) og at a boundary)	M1 A1		[2]
	(i	o) (i)	apparatus e.g.	laser & slit / point source & slit / lamp and slit & slit microwave source & slit water / ripple tank, source & barrier	В1		
			detector e.g.	screen aerial / microwave probe strobe / lamp	В1		
			what is observed		B1		[3]
		(ii) apparatus e.g.	loudspeaker, and slit / edge	В1		
				microphone & c.r.o. / ear	В1		
			what is observed		В1		[3]

5	(a)		sfer / propagation of energy	[2]
	(b)	(i)	displacement / velocity / acceleration (of particles in the wave)B1	[1]
		(ii)	displacement etc. is normal to direction of energy transfer / travel of wave / propagation of wave(not 'wave motion')	[1]
		(iii)	displacement etc. along / same direction of energy transfer / travel of wave / propagation of wave(not 'wave motion')	[1]
	(c)	eith	action: suitable object, means of observation	
			istant sourceM1 t region where darkness expected	
		light	rference: suitable object, means of observation and illumination	
		1973	nterference	[6]
			Total	: 111
Q31.				
5	(a)	(i)	frequency fB1	[1]
		(ii)	amplitude AB1	[1]
	(b)	πι	ad or 180°(unit necessary)B1	[1]
	(c)	(i)	speed = $f \times L$	[1]
		(ii)	wave is reflected at end / at P	
			or two waves travelling in opposite directions interfere	[3]
			Tota	il: 7]

Q32.

5			n a wave passes through a slit / by an edge wave spreads out / changes direction	M1 A1	[2]
	(b)	diag	ram: wavelength unchanged wavefront flat at centre, curving into geometrical shadow	M1 A1	[2]
	(3 SEL SELECT)		$\theta = n\lambda$	C1	
		1/($\theta = 90^{\circ}$ 650×10^{3}) = $n \times 590 \times 10^{-9}$	М1	
		n = : num	2.6 ober of orders is 2	A1	[3]
	(d)	intei	nsity / brightness decreases (as order increases)	В1	[1]
Q33.			200		
5	(a) ((i) (distance (of point on wave) from rest / equilibrium position	В1	[1]
	(i)	distance moved by wave energy / wavefront during one cycle of the source or minimum distance between two points with the same phase or between adjacent crests or troughs	В1	[1]
	(b) ((i)	T = 0.60 s	В1	[1]
	(i	ii) .	$\lambda = 4.0 \mathrm{cm}$	В1	[1]
	(ii		either $v = \lambda IT$ or $v = f\lambda$ and $f = 1/T$ $v = 6.7 \text{cm s}^{-1}$	C1 A1	[2]
	(c) (amplitude is decreasing so, it is losing power	M1 A1	[2]
	(i		intensity ~ (amplitude) ² ratio = 2.0 ² / 1.1 ² = 3.3	C1 C1 A1	[3]
Q34.	••	Ň			
3	adju: mea frequ	st c. sure uenc	microphone / (terminals of) loudspeaker to Y-plates of c.r.o. r.o. to produce steady wave of 1 (or 2) cycles / wavelengths on screen elength of cycle / wavelength λ and note time-base b by $= 1 / \lambda b$ b is measured as s cm ⁻¹ , unless otherwise stated)	B1 B1 M1 A1	[4]
	(if sta	aten	nent is 'measure T , $f = 1/T$ then last two marks are lost)		

Q35.

(a) when two (or more) waves meet (at a point) **B1** (resultant) displacement is (vector) sum of individual displacements **B1** [2] (b) (i) $\lambda = ax/D$ (if no formula given and substitution is incorrect then 0/3) C1 $590 \times 10^{-9} = (1.4 \times 10^{-3} \times x) / 2.6$ C1 $x = 1.1 \, \text{mm}$ A1 [3] (ii) 1. 180° (allow π if rad stated) A1 [1] 2. at maximum, amplitude is 3.4 units and at minimum, 0.6 units C1 intensity ~ amplitude2 allow I ~ a2 C1 ratio = $3.4^2 / 0.6^2$ = 32 A1 [3] Q36. 6 (a) waves overlap **B1** (resultant) displacement is the sum of the displacements of each of the waves [2] **B1** (b) waves travelling in opposite directions overlap / incident and reflected waves overlap **B1** (allow superpose or interfere for overlap here) waves have the same speed and frequency **B1** [2] (c) (i) time period = 4×0.1 (ms) C1 $f = 1 / T = 1 / 4 \times 10^{-4} = 2500 \text{ Hz}$ A1 [2] (ii) 1. the microphone is at an antinode and goes to a node and then an antinode / maximum amplitude at antinode and minimum amplitude at node **B1** [1] 2. $\lambda/2 = 6.7$ (cm) C1 $v = f\lambda$ C1 $v = 2500 \times 13.4 \times$ A1 [3] incorrect A then can only score second mark

Q37.

	5	(a)	to t	the o	erse waves have vibrations that are perpendicular / normal direction of energy travel	В1	
					dinal waves have vibrations that are parallel direction of energy travel	В1	[2]
		(b)		ratio	ons are in a single direction applies to transverse waves	М1	
			or	ıçı	normal to direction of wave energy travel		
			or		normal to direction of wave propagation	A1	[2]
		(c)	(i)	1.	amplitude = 2.8 cm	В1	[1]
				2.	phase difference = 135° or 0.75π rad or $3/4\pi$ rad or 2.36 radians (three sf needed)		
					numerical value	M1	
					unit	A1	[2]
			(ii)	an	nplitude = 3.96 cm (4.0 cm)	A1	[1]
Q38.							
4	(ass through the elements / gaps / slits in the grating nto geometric shadow	M1 A1	[2]
	(b) ((i)	1.	displacements add to give resultant displacement	B1	
		37,50	Marie B		each wavelength travels the same path difference or are in phase	B1	
					hence produce a maximum	A0	[2]
				2.	to obtain a maximum the path difference must be λ or phase difference		
					360° / 2π rad	B1	
					λ of red and blue are different	B1	
					hence maxima at different angles / positions	A0	[2]
		(1			: d sin θ	C1	
			ı	N =	$\sin 61^{\circ} / (2 \times 625 \times 10^{-9}) = 7.0 \times 10^{5}$	A1	[2]
		(ii	ii)	nλ =	2 × 625 is a constant (1250)	C1	
					$1 \rightarrow \lambda = 1250$ outside visible		
					$3 \rightarrow \lambda = 417$ in visible		
		4		6600	$4 \rightarrow \lambda = 312.5$ outside visible		ro
		••	*4	$\lambda = 4$	420 nm	A1	[2]

Q39.

- (a) waves (travels along tube) reflect at closed end / end of tube **B1** incident and reflected waves or these two waves are in opposite directions M1 interfere or stationary wave formed if tube length equivalent to $\lambda/4$, $3\lambda/4$, etc.
 - A1 [3]

[1]

- (b) (i) 1. no motion (as node) / zero amplitude **B1**
 - 2. vibration backwards and forwards / maximum amplitude along length **B1** [1]
 - (ii) $\lambda = 330 / 880 (= 0.375 \text{ m})$ C1 $L = 3\lambda/4$ C1 $L = 3 / 4 \times (0.375) = 0.28 (0.281) m$ A1 [3]

Q40.

- (a) travel through a vacuum / free space
- [1] **B1**
- microwaves wavelength: 10^{-4} to 10^{-1} m ultra-violet / UV wavelength: 10^{-7} to 10^{-9} m x -rays wavelength: 10^{-9} to 10^{-12} m (b) (i) B: name: **B1** C : name: **B1** F : name: **B1** [3]
 - (ii) $f = \frac{3 \times 10^8}{500 \times 10^{-9}}$ C1
 - $f = 6(.0) \times 10^{14} \,\mathrm{Hz}$ A1 [2]
- (c) vibrations are in one direction M1 perpendicular to direction of propagation / energy transfer or good sketch showing this A1 [2]

Q41.

5 (a) (i) displacement is the distance the rope / particles are (above or below) from the equilibrium / mean / rest / undisturbed position (not 'distance moved') **B1** [1] (ii) 1. amplitude (= 80 / 4) = 20 mm **B1** [1] 2. $v = f\lambda$ or $v = \lambda / T$ C₁ f = 1/T = 1/0.2 (5 Hz) C₁ $v = 5 \times 1.5 = 7.5 \text{ ms}^{-1}$ **A1** [3] (b) point A of rope shown at equilibrium position **B1** same wavelength, shape, peaks / wave moved 1/4 to right **B1** [2] (c) (i) progressive as energy OR peaks OR troughs is/are transferred/moved /propagated (by the waves) **B1** [1] (ii) transverse as particles/rope movement is perpendicular to direction of travel /propagation of the energy/wave velocity **B1** [1] Q42. (a) (i) 1. wavelength: minimum distance between two points moving in phase OR distance between neighbouring or consecutive peaks or troughs OR wavelength is the distance moved by a wavefront in time T or one oscillation/cycle or period (of source) [1] **B1** 2. frequency: number of wavefronts / (unit) time [1] OR number of oscillations per unit time or oscillations/time В1 (ii) speed = distance / time = wavelength / time period M1 $= \lambda / T = \lambda f$ A0 [1] (b) (i) amplitude = 4.0 mm [1] A1 (ii) wavelength = 18 / 3.75 (= 4.8) C1 speed = $2.5 \times 4.8 \times 10^{-2} = 12 \times 10^{-2} \,\mathrm{m \, s^{-1}}$ unit consistent with numerical answer, e.g. in cm s⁻¹ if cm used for λ and unit changed on answer line [2] A1 If 18 cm = 3.5λ used giving speed 13 (12.9) cm s⁻¹ allow max. 1]. (iii) 180° or π rad A1 [1] **B1** (c) light and screen and correct positions above and below ripple tank strobe or video camera **B1** [2]