

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Level

MARK SCHEME for the May/June 2012 question paper

for the guidance of teachers

9691 COMPUTING

9691/31

Paper 3 (Written Paper), maximum raw mark 90

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus S er
	GCE A LEVEL – May/June 2012	9691
(a) (i)	The table/each student has a repeated group of attrib of subjects	utes // each student has
(ii)	StudentName, TutorGroup and Tutor would need to be	e repeated for each record
(h)		

- (a) (i) The table/each student has a repeated group of attributes // each student has 1 of subjects
 - (ii) StudentName, TutorGroup and Tutor would need to be repeated for each record

(b)

Table: Student

Table):	Stud	ent	Sub	oject	tC	ho	oic	es
						-			

StudentName	TutorGroup	lutor
Tom	6	SAN
Joe	7	MEB
Samir	6	SAN

Student	Subject	Level	Subject
Name			Teacher
Tom	Physics	А	SAN
Tom	Chemistry	А	MEB
Tom	Gen Studies	AS	DIL
Joe	Geography	AS	ROG
Joe	French	AS	HEN
Samir	Computing	А	VAR
Samir	Chemistry	А	MEB
Samir	Maths	А	COR
Samir	Gen. Studies	А	DIL

Mark as follows			
Complete Student table			[1]
Repetition of StudentName in StudentSubj	ectchoices	table	[1]
Complete columns 2, 3, and 4			[1]

(c) (i) primary key...

- an attribute/combination of attributes
- chosen to ensure that the records in a table are unique // used to identify a record/tuple
- (ii) StudentName + Subject Correct Answer Only
- (iii) there is a one-to-many relationship // Student is the 'one side' table -StudentSubjectChoices is the 'many side' table.
 - The primary key (attribute StudentName) in Student
 - Links to StudentName in the StudentSubjectChoices table
 - (StudentName in the) StudentSubjectChoices table is the foreign key // StudentName is the foreign key that links the two tables [MAX 2]

(d) - There are non-key attributes ...

- SubjectTeacher ...
- dependent only on part of the primary key (i.e. Subject) // partial dependency [MAX 2]
- (e) There are dependent <u>non-key</u> attributes // there are <u>non-key</u> dependencies - TutorGroup is dependant on Tutor // Tutor is dependent on TutorGroup

[Total: 14]

[1]

[2]

[2]

[1]

apapers.com

2 (a) 83

(b) 153

[1]

Page 3	Mark Scheme: Teachers' version GCE A LEVEL – Mav/June 2012	Syllabus 20 er 9691
c) –110		a Can
(0) 110		1611
(d) (i) +	-13	
r E	nark as follows: Exponent: +4 // move the pattern four places	
ľ	Antissa: +13/16 // 0.1101	[3]
, (::) 7	There will be a unique representation for a number	[0]
(11)	The format will ensure the number is represented with	the greatest possible/more
a N	Iccuracy/precision Aultiplication is performed more accurately/precisely	[MAX 1]
(iii) N	/antissa: 0100 0000	
Ě	Exponent: 1000 Therefore number is ½ * 2 ⁻⁸ // +1/512 // +2 ⁻⁹ // 0.00195	[3]
		[0]
(e) choic	es made will effect range and accuracy	
More More	bits used for the mantissa will result in better accuracy bits use for the exponent will result in larger range of numb	ers [Max 2]
		[Total: 12]
(a) Boole Flags	an whether or not the requested customer name is found	[1] [1]
Soore		[1]
Index	manie	[1]
Index Index	+ 1 = 2001 // Index >= 2001 // Index > 2000	[1] [1]
IsFou	nd = FALSE // NOT IsFound // Index = 2001 // Index > 2000	[1]
(b) - vait - whe	n an item is not found all items are considered	
- Fev are n	comparisons are needed if the value is near the start of eeded/it's time consuming if the value is near the end of the	the list // Many comparisons e list
- The	average number of comparisons needed will be N/2 (or 10	00 for this data set) [MAX 2]
(c) (i)]	he values must be in order	
(0) (1) <u>(</u>	Calculate the middle value and compare with the requested	value
I F	Requested value is less/greater discard the top/bottom list Repeat with a new list // compare with a new middle value	
(Continue until value is found or list is empty	[MAX 4]
(ii) (Compare with	
F	Sanana	
(Cherry	[3]
		[Total: 16]

[Total: 12]

5 (a) LDD 105

Accumulator	
0001 0001	

	Main memory
100	0100 0000
101	0110 1011
102	1111 1110
103	1111 1010
104	0101 1101
105	0001 0001
106	1010 1000
107	1100 0001
لم	\int
200	1001 1111

Mark as follows:

- Sensible annotation which makes clear 105 is the address used

- Final value in Acc

Page 5	Mark Scheme: Teachers' version	Syllabus & er
	GCE A LEVEL – May/June 2012	9691 72
b)		an.
LDX 101		Main memory
		100 0100 0000
		101 0110 1011
Accumula	tor	102 1111 1110
0101 110		103 <u>1111 1010</u>
		104 0101 1101
		105 0001 0001
Index Reg	ister	106 1010 1000
00000011		107 1100 0001
		1
		200 1001 1111

Mark as follows:

- IR contents converted to 3

- Computed address of 101 + 3 = 104

// explanation: add contents of IR to address part of instruction

- Then, 'direct addressing' to 104

- Final value in Acc

[MAX 4]

(c)				
		N	emory Address	
Accumulator	507	508	509	510
	22	170	0	0
22				
23				
			23	
170				
171				
				171

Mark as follows ...

- 22 to Accumulator

- Incremented to 23

- 23 copied to address 509

- 170 copied to Accumulator and incremented to 171

- 171 in address 510

[5]

(d) Every assembly language instruction is translated into exactly one machine code instruction / there is a 1-to-1 relationship between them [1]

[Total: 11]

F	Dage (6	Mark Scheme: Teachers' vers	ion Sy	llabus & er
			GCE A LEVEL – May/June 20	12 9	691 73
(ð	a) De Ge // is ma	cide wł ets next s next le aximise	nich process use of the processor (low level schedule baded into memory (high level schedule system resources	er) *)	Sambra
(k	o) (i)	Runn The p	ng rocess currently has the use of the proc	essor	
		Runn The p anoth	able/Ready process would like to use the processo er process	or but the processo	or is currently in use b
		Suspo The p doing	ended/Blocked process is not capable of using the pro I/O	cessor / the proce	ss is currently occupie [6
	(ii)	Maint one fi	ain a separate 'data structure' for the pro eld of the Process Control Block will sto	ocesses in each sta re the current state	te [1
(0	c) (i)	<i>Proce</i> The p 3D-gr	<i>ssor bound</i> rocess does very little I/O // the process aphics calculation // any plausible applic	requires the proces	ssor most of the time
		I/O bo The p applio	ound rocess does lots of I/O // the process re ation	equires little proces	sor time // any plausibl [²
	(ii)	Priori Other proce	y to <u>I/O bound processes</u> wise they will not get a look in // pro ssor	cessor bound jobs	would monopolise th
					[Total: 15
(a	a) a <u>r</u> to	nodel/p predict	rogram of the <u>real-world</u> system is produ the likely behaviour of a <u>real-world</u> syste	iced m	[2
(k	b) Co A c Th Th da Th	mputer compute e proble e comp ys into e simul	system suitable as er program/system can be written/create em can control the values of all the varia puter can produce results very quickly o minutes processing ation removes any element of hazard/da	d which model the bles/parameters // e.g. models wha	problem/application It actually takes severa
	So It v	me rea vill be c	-world problems are impossible to creat ost-effective to model the problem first	e	[MAX 2

Page 7	Mark Scheme: Teachers' version	Syllabus er
(c) Time tal Number Accepta Number Time of Number Speed o Anything	ken to serve a customer of items in the customer basket ble wait time in the queue of checkouts day/day of the week of customers arriving of the checkout operators g plausible	[MAX 3]
(d) - Increa will Or anyti	se the average time taken to serve a customer increase the average queue length ning plausible	[2]
		[Total: 9]