## MARK SCHEME for the November 2005 question paper

## 9702 PHYSICS

## 9702/02

Paper 2 maximum raw mark 60

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published Report on the Examination.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

The minimum marks in these components needed for various grades were previously published with these mark schemes, but are now instead included in the Report on the Examination for this session.

- CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2005 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

| Page 1 | Mark Scheme | Syllabus | WWW-xterapap |
| :---: | :---: | :---: | :---: |
|  | GCE A/AS LEVEL - November 2005 | 9702 | 2 |

(a)
point where whole weight of body (allow mass) M1 may be considered to act (do not allow 'acts')
(b) when CG below pivot, weight acts through the pivot B1
(so) weight has no turning effect about pivot B1
(a) change in velocity/time (taken) B1
(b) velocity is a vector/velocity has magnitude \& direction B1 direction changing so must be accelerating B1
either $6.1 \times \cos 35=4.99 \mathrm{~N}$
or scale shown
B1
(c) so no resultant vertical force triangle of correct shape B1

$$
6.1 \sin 35=3.5 \mathrm{~N}
$$

horizontally
resultant $=3.5 \pm 0.2 \mathrm{~N}$ B1
horizontal $\pm 3^{\circ}$ B1
(b) $\quad \rho$ has base unit $\mathrm{kg} \mathrm{m}^{-3}$

B1
$g$ has base unit $\mathrm{m} \mathrm{s}^{-2} \quad$ B1
$h \rho g$ has base unit $\mathrm{m} \times \mathrm{kg} \mathrm{m}^{-3} \times \mathrm{m} \mathrm{s}^{-2}$ M1
same as pressure QED A0
allow answer based on centripetal force:
resultant is centripetal force (which is horizontal)
resultant is horizontal component of tension
$6.1 \sin 35=3.5 \mathrm{~N}$
horizontally
(a) (i) use of tangent at time $t=0 \quad$ B1
acceleration $=42 \pm 4 \mathrm{~cm} \mathrm{~s}^{-2}$
A1
(ii) use of area of loop B1
distance $=0.031 \pm 0.001 \mathrm{~m}$ B2
allow 1 mark if $0.031 \pm 0.002 \mathrm{~m}$ )
(b) (i) $\quad \begin{aligned} & F=m a \\ & =0.93 \times 0.42 \quad \text { \{allow e.c.f. from (a)(i) \} } \\ & =0.39 \mathrm{~N}\end{aligned}$ A1
(ii) force reduces to zero in first $0.3 \mathrm{~s} \quad \mathrm{~B} 1$
then increases again in next 0.3 s M1
in the opposite direction A1
(a) similarity: e.g. same wavelength/frequency/period, constant phase difference
difference: e.g. different amplitude/phase B1 (do not allow a reference to phase for both similarity and difference)
(b) constant phase difference so coherent B1
(c) (i) intensity $\propto$ amplitude ${ }^{2}$
$I \propto 3^{2}$ and $I_{\mathrm{B}} \propto 2^{2}$ leading to M1
$I_{\mathrm{B}}=\frac{4}{9} I$
A0
(ii) resultant amplitude $=1.0 \times 10^{-4} \mathrm{~cm}$ C1
resultant intensity $=\frac{1}{9} I$
A1
(ii) 12.70 V
$2 \frac{\mathrm{~L}}{100}=\frac{2.70}{4.50}$
$L=60.0 \mathrm{~cm}$
(iii) thermistor resistance decreases as temperature rises so QM is shorter
(a) product of force and distance M1
moved in the direction of the force
(b) (i) falls from rest
decreasing acceleration reaches a constant speed B1
(ii) straight line with negative gradient B1
$y$-axis intercept above maximum $E_{K}$
reasonable gradient (same magnitude as that for $E_{K}$ initially)

A1 B1 B1 B1 B1
A1 [1]

C1

A1
M1
A1
[2]
[2]

