UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Level

MARK SCHEME for the November 2005 question paper

9702 PHYSICS

9702/04

Core maximum raw mark 60

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

The minimum marks in these components needed for various grades were previously published with these mark schemes, but are now instead included in the Report on the Examination for this session.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2005 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 1		Mark Scheme	Syllabus	Paper	
			A LEVEL – NOVEMBER 2005	9702	4	
1	(a)	$GM/R^2 = \omega = 2\pi/(0.05)$				
		$R^3 = 7.57$	$^{11} \times 6.0 \times 10^{24} = R^3 \times \omega^2$ $\times 10^{22}$			[3]
	(b)(i)	= (6.6 = 5.3	$ \begin{array}{l} /R_{e} - GM/R_{o} \\ 7 \times 10^{-11} \times 6.0 \times 10^{24}) (1 / 6.4 \times 10^{6} - 1 / 4.2 \times 10^{7}) \\ I \times 10^{7}_{,} J \ kg^{-1} \end{array} $	C1	I	
			$1 \times 10^7 \times 650$			[4]
	(c)	e.g. satelli	B1		[1]	
2	(a)		law $pV = \text{constant} \times T$ s of p , V and T			[2]
	(b)		$\times 10^5 \times 3.1 \times 10^{-2}) / (8.31 \times 290)$			[2]
	(c)	at new pre	ssure, $n_n = 3.73 \times \frac{3.4}{2.9} \times \frac{290}{300}$ = 4.23 mol	C1	I	
			0.50 mol strokes = 0.50 / 0.012 = 42 (must round up for mark)	C1	1	[3]
3	(a)	correct sta	B1		[1]	
	(b)(i)		$^{\prime}$			[2]
	(ii)	q = 4.05	$\times 10^4 J$	B1		[1]
	(iii)	$\Delta U = 4.05$ penalise 2			[1]	
	(c)	energy =	molecules = N_A			
4	(a)(i)		6.2 × 10 ⁻²⁰ J (accept 1 sig.fig.)			[2]
		= 2π × = 8800	1400) rad s ⁻¹	A1		[2]
	(ii)	$a_0 = (-)\omega$ = (880	$x_0^2 x_0 = 0^2 \times 0.080 \times 10^{-3}$	C1	I	
		= 6200) m s ⁻²	A1		[2]
	(b)	straight line through origin with negative gradient end points of line correctly labelled				[2]
	(c)(i)	zero displacement		B1		[1]
	(ii)	= 880	$0 \times 0.080 \times 10^{-3}$		l	
) m s ⁻¹	A1		[2]

© University of Cambridge International Examinations 2005

www.xtrapapers.com

Γ	Page 2		Mark Scheme S	Syllabus	Paper	
[A LEVEL – NOVEMBER 2005	9702	4	
5	(a)		qV(or some verbal explanation)			
			$\times 10^{-31} \times v^2 = 1.6 \times 10^{-19} \times 1.2 \times 10^4$			[2]
		0.40		/	0	[-]
	(b)(i)	within fie				
		have and f	in 'downward' directionin 'downward' directionield: straight, with no 'kink' on leaving field			101
		реуона п	D	1	[3]	
	(ii)1.	<i>v</i> is smal	ler	M	1	
			n is larger			[2]
	2.		c) force is larger			101
		deflectior	n is larger	A	1	[2]
6	(a)	(numeric	ally equal to) force per unit length	M	1	
	()		ht conductor carrying unit current		1	
		normal to	the field	A	1	[3]
	(b)	flux throu	igh coil = $BA \sin \theta$	В	1	
	(6)		$ge = BAN \sin\theta$			[2]
					•	[-]
	(c)(i)) e.m.f. proportional to			
		rate of ch	nange of flux (linkage)	A	1	[2]
	(ii)	graph:	two square sections in correct positions, zero elsewhere	В	1	
			pulses in opposite directions		1	
		i	amplitude of second about twice amplitude of first	В	1	[3]
7	(a)(i)	enerav re	equired to separate the nucleons in a nucleus	M	11	
•	(4)(1)		separated to infinity / completely			[2]
	(ii)	S shown	at peak	В	1	[1]
	(b)(i)	4		A	1	[1]
	(!!\ . 4			0	4	
	(11)1.		nergy as product of A and energy per nucleon $\dots = (8.37 \times 142 + 8.72 \times 90) - 235 \times 7.59$	C	1	
			$= (0.37 \times 142 + 0.72 \times 90) = 233 \times 7.59$ = 1189 +785 - 178			
			= 190 MeV(-1 for each a.e.)	A	2	[3]
	-					
	2.		$= mc^2$			
			= 1.6×10^{-13} J = $(190 \times 1.6 \times 10^{-13}) / (3.0 \times 10^8)^2$	C	I	
		energy -	$= (190 \times 1.6 \times 10^{-28} \text{ kg}) (3.0 \times 10^{-28} \text{ kg})$	A	1	[3]
			- 0. - ^ 10 Ny	···· ~	1	[2]