MARK SCHEME for the October/November 2006 question paper

9702 PHYSICS

9702/04 Paper 4 (Core), maximum raw mark 60

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

The grade thresholds for various grades are published in the report on the examination for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2006 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - OCT/NOV 2006	9702	04

1 (a) either ratio of work done to mass/charge or work done moving unit mass/charge from infinity or both have zero potential at infinity B1
(b) gravitational forces are (always attractive) B1
electric forces can be attractive or repulsive B1 for gravitational, work got out as masses come together /mass moves from infinity B1
for electric, work done on charges if same sign, work got out if opposite sign as charges
come together
2 (a) (i) idea of heat lost (by oil) = heat gained (by thermometer)
C1
$32 \times 1.4 \times(54-t)=12 \times 0.18 \times(t-19) \quad$ C1
$t=52.4^{\circ} \mathrm{C}$ A1
(ii) either ratio $(=1.6 / 54)=0.030$ or $(=1.6 / 327)=0.0049$ A1
(b) thermistor thermometer (allow 'resistance thermometer') B1
because small mass/thermal capacity B1
(c) boiling point temperature is constant M1
further comment e.g. heating of bulb would affect only rate of boiling A1
3 (a) use of $a=-\omega^{2} x$ clear C1
either $\omega=\sqrt{ }(2 k / m)$ or $\omega^{2}=(2 k / m)$ B1
$\omega=2 \pi f \quad$ C1
$f=(1 / 2 \pi) \sqrt{ }(2 \times 300) / 0.240)$
$=7.96 \approx 8 \mathrm{~Hz}$ A0
(b) (i) resonance B1
(ii) 8 Hz
B1
(c) (increase amount of) damping B1
without altering (k or) $m \ldots$ (some indirect reference is acceptable) B1
sensible suggestion
B1
4 (a) (i) $G M m\left\{\left(R+h_{1}\right)^{-1}-\left(R+h_{2}\right)^{-1}\right\}$ B1
$1 / 2 m\left\{v_{1}^{2}-v_{2}^{2}\right\}$
B1
(b) $\quad 2 M \times 6.67 \times 10^{-11}\left\{\left(26.28 \times 10^{6}\right)^{-1}-\left(29.08 \times 10^{6}\right)^{-1}\right\}=5370^{2}-5090^{2} \quad$ B1
$M \times 4.888 \times 10^{-19}=2.929 \times 10^{6}$ C1 $M=6.00 \times 10^{24} \mathrm{~kg}$ A1
(If equation in (a) is dimensionally unsound, then 0/3 marks in (b), if dimensionally sound but incorrect, treat as e.c.f.)
$\begin{array}{lll}5 \text { (a) (i) } \begin{array}{l}\text { (induced) e.m.f proportional/equal to rate of change of flux (linkage) } \\ \text { (allow 'induced voltage, induced p.d.) } \\ \text { flux is cust as the disc moves }\end{array} & \text { B1 }\end{array}$
hence inducing an e.m.f A0
(ii) field in disc is not uniform/rate of cutting not same/speed of disc not same (over whole
disc)
so different e.m.f.'s in different parts of disc M1
lead to eddy currents A0
$\begin{array}{ll}\text { (b) eddy currents dissipate thermal energy in disc } & \text { B1 } \\ \text { energy derived from oscillation of disc } & \text { B1 }\end{array}$
energy of disc depends on amplitude of oscillations B1

Page 3	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - OCT/NOV 2006	9702	04

