MARK SCHEME for the October/November 2010 question paper for the guidance of teachers

9702 PHYSICS

9702/22
Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - October/November 2010	9702	22

[2]
B1 [1]
B1 [1]
B1 [1]

3 (a) point at which (whole) weight (of body) (allow mass for weight) M1 appears / seems to act ... (for mass need 'appears to be concentrated')
(b) (i) point C shown at centre of rectangle $\pm 5 \mathrm{~mm}$
(ii) arrow vertically downwards, from C with arrow starting from the same margin of error as in (b)(i)
(c) (i) reaction / upwards / supporting / normal reaction force M1
friction
force(s) at the rod A1
(ii) comes to rest with (line of action of) weight acting through rod allow C vertically below the rod
so that weight does not have a moment about the pivot / rod

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - October/November 2010	9702	22

4
(a) energy $=$ average force \times extension
B1

$$
=1 / 2 \times F \times x
$$

B1
(Hooke's law) extension proportional to (applied) force B1

$$
\text { hence } F=k x
$$ B1

so $E=1 / 2 k x^{2}$ A0
(b) (i) correct area shaded B1
(ii) $1.0 \mathrm{~cm}^{2}$ represents 1.0 mJ or correct units used in calculation $E_{S}=6.4 \pm 0.2 \mathrm{~mJ}$ C1
(for answer $> \pm 0.2 \mathrm{~mJ}$ but $\leq \pm 0.4 \mathrm{~mJ}$, then allow $2 / 3$ marks)
(iii) arrangement of atoms / molecules is changed B1

5 (a) (i) distance (of point on wave) from rest / equilibrium position
B1
(ii) distance moved by wave energy / wavefront during one cycle of the source or minimum distance between two points with the same phase or between adjacent crests or troughs

B1
(b) (i) $T=0.60 \mathrm{~s} \quad \mathrm{~B} 1$
(ii) $\lambda=4.0 \mathrm{~cm}$

B1
(iii) either $v=\lambda / T$ or $v=f \lambda$ and $f=1 / T \quad$ C1 $v=6.7 \mathrm{~cm} \mathrm{~s}^{-1}$

A1
(c) (i) amplitude is decreasing M1
so, it is losing power A1
(ii) intensity $\sim(\text { amplitude })^{2} \quad$ C1
ratio $=2.0^{2} / 1.1^{2}$
C1
$=3.3$

$$
=3.3
$$

A1
[3]

6 (a) (i) at $22.5^{\circ} \mathrm{C}, R_{\mathrm{T}}=1600 \Omega$ or $1.6 \mathrm{k} \Omega$
C1
total resistance $=800 \Omega$
A1
$\begin{array}{ll}\text { (ii) either use of potential divider formula or } & \text { current }=9 / 2000(4.5 \mathrm{~mA}) \\ V=(0.8 / 2.0) \times 9 & V=(9 / 2000) \times 800\end{array}$
$V=(0.8 / 2.0) \times 9$
$V=(9 / 2000) \times 800$
$=3.6 \mathrm{~V}$
$=3.6 \mathrm{~V}$
A1
[2]
$\begin{array}{ll}\text { (b) (i) total resistance }=4 / 5 \times 1200 & \mathrm{C} 1 \\ =960 \Omega & \mathrm{~A} 1\end{array}$
(ii) for parallel combination, $1 / 960=1 / 1600+1 / R_{T}$
$R_{\mathrm{T}}=2400 \Omega / 2.4 \mathrm{k} \Omega$
C1
temperature $=11^{\circ} \mathrm{C}$ A1
[2]
[2]

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - October/November 2010	9702	22

(c) e.g. only small part of scale used / small sensitivity non-linear B1
(any two sensible suggestions, 1 each, max 2)
(a) (i) most α-particles were deviated through small angles B2 (allow 1 mark for 'straight through' / undeviated)
(ii) small fraction of α-particles deviated through large angles M1 greater than 90° (allow rebound back)

A1
(b) e.g. β-particles have a range of energies
β-particles deviated by (orbital) electrons
β-particle has (very) small mass
(any two sensible suggestions, 1 each, max 2) B2

Do not allow β-particles have negative charge or β-particles have high speed

