UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2010 question paper for the guidance of teachers

9702 PHYSICS

9702/23

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2	Mark Scheme: Teachers' version	Syllabus	yllabus Paper			
		GCE A LEVEL – October/November 2010	9702	23			
1	(a) allow	0.05 mm → 0.15 mm		B1	[1]		
	(b) allow	$0.25s \rightarrow 0.5s$		B1	[1]		
	(c) allow	$8N \rightarrow 12N$		B1	[1]		
	ignore number of significant figures						
2	crystalline:	long range order / orderly pattern (lattice) repeats itself long chain molecules / chains of monomers some cross-linking between chains / tangled chains	(1) (1)	B1 B1			
	·	 disordered arrangement of molecules / atoms / particle any ordering is short-range 	es (1)	B1			
	(three 'B' r	narks plus any other 2 marks)		B2	[5]		
3	adjust c.r.c measure le frequency	icrophone / (terminals of) loudspeaker to Y-plates of c.r.c of to produce steady wave of 1 (or 2) cycles / wavelength ength of cycle / wavelength λ and note time-base $b = 1 / \lambda b$ is measured as s cm ⁻¹ , unless otherwise stated)		B1 B1 M1 A1	[4]		
	(if statement is 'measure T , $f = 1/T$ then last two marks are lost)						
4	(a) accep	table straight line drawn (touching every point)		В1	[1]		
	` '	stance fallen is not <i>d</i> e distance fallen plus the diameter of the ball		C1 A1	[2]		
	('d is r	not measured to the bottom of the ball' scores 2/2)					
	. , . ,	ameter: allow 1.5 ± 0.5 cm (accept one SF) o ecf from (a)		A1	[1]		
	gı	radient = 4.76, \pm 0.1 with evidence that origin has not been radient = g / 2 = 9.5 m s ⁻²	en used	C1 C1 A1	[3]		

Page 3		3	Mark Scheme: Teachers' version	Syllabus	Paper		
				GCE A LEVEL – October/November 2010	9702	23	
5	(a)	(i)	Fig.	5.2		B1	[1]
		(ii)	Fig.	5.3		B1	[1]
	(b)	kine	etic er	etic energy increases from zero then decreases to zero		B1	[1]
	(c)	(i)	$\Delta E_{\rm P} = mg\Delta h / mgh$ = 94 × 10 ⁻³ × 9.8 × 2.6 × 10 ⁻² using $g = 10$ then -1		C1		
				= 0.024J	'	A1	[2]
		(ii)	eithe	er $0.024 = \frac{1}{2}k \times (2.6 \times 10^{-2})^2$ or $\frac{1}{2}kd^2 = \frac{1}{2}kd^2 \times (2.6 \times 10^{-2})^2$	$r \frac{1}{2} kd^2 = \frac{1}{2}k \times (2.6 \times 10^{-2})^2 - \frac{1}{2}kd^2$ $kd^2 = \frac{1}{2}k \times (2.6 \times 10^{-2})^2$ d = 0.018 m		
				= 1.8 cm = 1.8 cm		A1	[3]
6	(a)			o (or more) waves meet (at a point) t) displacement is (vector) sum of individual displacem	nents	B1 B1	[2]
	(b)	(i)	590	ax / D (if no formula given and substitution is incorred $\times 10^{-9} = (1.4 \times 10^{-3} \times x) / 2.6$ 1.1 mm	ct then 0/3)	C1 C1 A1	[3]
		(ii)	1. 1	80° (allow π if rad stated)		A1	[1]
			2. at maximum, amplitude is 3.4 units and at minimum, 0.6 units intensity \sim amplitude ² allow $I \sim a^2$ ratio = $3.4^2 / 0.6^2$		C1 C1		
				32		A1	[3]
7	(a)	(i)	path	: reasonable curve upwards between plates straight and at a tangent to the curve beyond the pla	tes	B1 B1	[2]
		(ii)	1. (F	= =) E.g		B1	[1]
			2 . (<i>t</i>	=) L / v		B1	[1]
	(b)	(i)	syste prov	momentum of a system remains constant or total morem before a collision equals total momentum after collided no external force acts on the system not accept 'conserved' but otherwise correct statement	ision	M1 A1	[2]
		(ii)	(∆ <i>p</i> :	=) EqL / v allow ecf from (a)(ii)		B1	[1]
		(iii)	eithe or	charged particle is not an isolated system so law does not apply system is particle and 'plates' equal and opposite Δp on plates / so law applies		M1 A1 (M1) (A1)	[2]

[2]

В1

Page 4			Syllabus	Paper	Paper	
		GCE A LEVEL – October/November 2010	9702	23		
8	(a) (i)	either $P = V^2 / R$ or $I = 1200 / 230$ or 5.22 $R = (230 \times 230) / 1200$		C1		
		$R = 230^2 / 1200$ or $R = 230 / 5.22$ = 44.1 Ω = 44.1 Ω		M1 A0	[2]	
	(ii)	$R = \rho L / A$ = (1.7 × 10 ⁻⁸ × 9.2 × 2) / (\pi × \{0.45 × 10 ⁻³ \}^2) = 0.492 \Omega		C1 M1 A0	[2]	
	pov	rent = 230 /44.6 ver = (230 /44.6) ² × 44.1 = 1170 W low full credit for solution based on potential divider)		C1 C1 A1	[3]	
	(c) e.g	. less power dissipated in the heater / smaller p.d. across more power loss in cable / current lower cable becomes heated / melts (any two sensible suggestions, 1 each, max 2)	heater /	B1 B1	[2]	
9		cleus emits α -particles or β -particles and/or γ -radiation form a different / more stable nucleus		B1 B1	[2]	
	(b) (i)	fluctuations in count rate (not 'count rate is not constant	ť)	B1	[1]	
	(ii)	no effect		B1	[1]	
	(iii)	if the source is an α-emitter	etrons)	B1		
		either α -particles stopped within source (and gain elec	Juons)	5.4		

allow 1/2 for 'parent nucleus gives off radiation to form daughter nucleus'

 α -particles are helium <u>nuclei</u>

or