MARK SCHEME for the October/November 2010 question paper for the guidance of teachers

9702 PHYSICS

9702/41
Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2010	9702	41

Section A

1
(a) force per unit mass (ratio idea essential)
B1
(b) graph: correct curvature M1 from $\left(R, 1.0 g_{\mathrm{s}}\right) \&$ at least one other correct point A1
(c) (i) fields of Earth and Moon are in opposite directions
either resultant field found by subtraction of the field strength
or any other sensible comment
so there is a point where it is zero
(allow $F_{\mathrm{E}}=-F_{\mathrm{M}}$ for 2 marks)
(ii) $\begin{aligned} & G M_{\mathrm{E}} / x^{2}=G M_{\mathrm{M}} /(D-x)^{2} \\ & \left(6.0 \times 10^{24}\right) /\left(7.4 \times 10^{22}\right)=x^{2} /\left(60 R_{\mathrm{E}}-x\right)^{2}\end{aligned}$
C1
$x=54 R_{\mathrm{E}}$
C1
(iii) graph: $g=0$ at least $2 / 3$ distance to Moon
B1
g_{E} and g_{M} in opposite directions
correct curvature (by eye) and $g_{\mathrm{E}}>g_{\mathrm{M}}$ at surface
A1
[1]

2 (a) (i) no forces (of attraction or repulsion) between atoms / molecules / particles
(ii) sum of kinetic and potential energy of atoms / molecules
due to random motion
A1
$\begin{array}{ll}\text { (iii) (random) kinetic energy increases with temperature } & \text { M1 } \\ \text { no potential energy } \\ \text { (so increase in temperature increases internal energy) } & \text { A1 }\end{array}$
(b) (i) zero

A1
(ii) work done $=p \Delta V$

$$
\begin{aligned}
& =4.0 \times 10^{5} \times 6 \times 10^{-4} \\
& =240 \mathrm{~J} \quad \text { (ignore any sign) }
\end{aligned}
$$

(iii)

change	work done / J	heating / J	increase in internal energy / J
$\mathrm{P} \rightarrow \mathrm{Q}$	$\mathbf{+ 2 4 0}$	-600	$\mathbf{- 3 6 0}$
$\mathrm{Q} \rightarrow \mathrm{R}$	0	+720	$\mathbf{+ 7 2 0}$
$\mathrm{R} \rightarrow \mathrm{P}$	$\mathbf{- 8 4 0}$	+480	$\mathbf{- 3 6 0}$

[^0]| Page 3 | Mark Scheme: Teachers' version | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
| | GCE AS/A LEVEL - October/November 2010 | 9702 | 41 |

3 (a) (i) resonance
B1 [1]
(ii) amplitude 16 mm and frequency 4.6 Hz

A1 [1]
(b) (i) $a=(-) \omega^{2} x$ and $\omega=2 \pi f$

C1
$a=4 \pi^{2} \times 4.6^{2} \times 16 \times 10^{-3}$
C1
$=13.4 \mathrm{~m} \mathrm{~s}^{-2}$
A1
(ii) $F=m a$
$=150 \times 10^{-3} \times 13.4$
$=2.0 \mathrm{~N}$

C1
A1
[2]
(c) line always 'below' given line and never zero

M1
peak is at 4.6 Hz (or slightly less) and flatter
A1

4 (a) charge / potential (difference) (ratio must be clear) B1
(b) (i) $V=Q / 4 \pi \varepsilon_{0} r$

B1
(ii) $C=Q / V=4 \pi \varepsilon_{0} r$ and $4 \pi \varepsilon_{0}$ is constant M1
so $C \propto r$
AO
(c) (i) $r=C / 4 \pi \varepsilon_{0} r$

C1
$r=\left(6.8 \times 10^{-12}\right) /\left(4 \pi \times 8.85 \times 10^{-12}\right)$
C1
$=6.1 \times 10^{-2} \mathrm{~m}$
A1
(ii) $Q=C V=6.8 \times 10^{-12} \times 220$ $=1.5 \times 10^{-9} \mathrm{C}$

A1
(d) (i) $V=Q / C=\left(1.5 \times 10^{-9}\right) /\left(18 \times 10^{-12}\right)$ $=83 \mathrm{~V}$
(ii) either energy $=1 / 2 \mathrm{CV}^{2}$
$\Delta E=1 / 2 \times 6.8 \times 10^{-12} \times 220^{2}-1 / 2 \times 18 \times 10^{-12} \times 83^{2}$
$=1.65 \times 10^{-7}-6.2 \times 10^{-8}$
$=1.03 \times 10^{-7} \mathrm{~J}$
A1
or \quad energy $=1 / 2 Q V$
$\Delta E=1 / 2 \times 1.5 \times 10^{-9} \times 220-1 / 2 \times 1.5 \times 10^{-9} \times 83$

$$
\begin{equation*}
=1.03 \times 10^{-7} \mathrm{~J} \tag{C1}
\end{equation*}
$$

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2010	9702	41

5 (a) field into (the plane of) the paper
B1 [1]
(b) force due to magnetic field provides the centripetal force
$m v^{2} / r=B q v \quad$ C1
$B=\left(20 \times 1.66 \times 10^{-27} \times 1.40 \times 10^{5}\right) /\left(1.6 \times 10^{-19} \times 6.4 \times 10^{-2}\right) \quad$ B1
$=0.454 \mathrm{~T} \quad \mathrm{AO}$
[3]
(c) (i) semicircle with diameter greater than 12.8 cm

B1
(ii) new flux density $=\frac{22}{20} \times 0.454$ C1

$$
B=0.499 \mathrm{~T}
$$

6 (a) (i) e.g. prevent flux losses / improve flux linkage B1
(ii) flux in core is changing B1
e.m.f. / current (induced) in core

B1
induced current in core causes heating
B1
$\begin{array}{ll}\text { (b) (i) that value of the direct current producing same (mean) power / heating } \\ \text { in a resistor } & \text { M1 }\end{array}$
(ii) power in primary = power in secondary M1
$V_{\mathrm{P}} I_{\mathrm{P}}=V_{\mathrm{S}} I_{\mathrm{S}}$
A1

7 (a) (i) e.g. electron / particle diffraction B1
(ii) e.g. photoelectric effect
(b) (i) 6
(ii) change in energy $=4.57 \times 10^{-19} \mathrm{~J}$
$\lambda=h c / E \quad$ C1
$=\left(6.63 \times 10^{-34} \times 3.0 \times 10^{8}\right) /\left(4.57 \times 10^{-19}\right)$
$=4.4 \times 10^{-7} \mathrm{~m}$
A1

8 (a) splitting of a heavy nucleus (not atom/nuclide) M1 into two (lighter) nuclei of approximately same mass A1
(b) ${ }_{0}^{1} n$
${ }_{2}^{4} \mathrm{He} \quad$ (allow ${ }_{2}^{4} \alpha$) M2
${ }_{3}^{7} \mathrm{Li} \quad$ A1
(c) emitted particles have kinetic energy B1range of particles in the control rods is short / particles stopped in rods /lose kinetic energy in rodsB1
kinetic energy of particles converted to thermal energy B1

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2010	9702	41

Section B

9 (a) (i) non-inverting (amplifier)
B1 [1]
(ii) $(G=) 1+R_{2} / R_{1}$

B1 [1]
(b) (i) $\begin{aligned} & \text { gain }=1+100 / 820 \\ & \text { output }=17 \mathrm{mV} \\ & \text { (ii) } 9 \mathrm{~V} \\ &\left(R_{2} / R_{1} \text { scores } 0 \text { in (a)(ii) but possible } 1 \text { mark in each of (b)(i) and (b)(ii) }\right. \\ &\left(1+R_{1} / R_{2}\right) \text { scores } 0 \text { in (a)(ii), no mark in (b)(i), possible } 1 \text { mark in (b)(ii) } \\ &\left(1-R_{2} / R_{1}\right) \text { or } R_{1} / R_{2} \text { scores } 0 \text { in (a)(ii), (b)(i) and (b)(ii)) }\end{aligned}$

10 (a) (i) density \times speed of wave (in the medium)
B1
(ii) $\rho=\left(7.0 \times 10^{6}\right) / 4100$

$$
=1700 \mathrm{~kg} \mathrm{~m}^{-3}
$$

A1
(b) (i) $I=I_{\mathrm{T}}+I_{\mathrm{R}}$

B1
(ii) 1. $\alpha=\left(0.1 \times 10^{6}\right)^{2} /\left(3.1 \times 10^{6}\right)^{2}$
2. $\alpha \approx 1$

C1
$=0.001$
A1
$\alpha \approx 1$
A1
[2]
(c) either very little transmission at an air-skin boundary

M1
(almost) complete transmission at a gel-skin boundary M1
when wave travels in or out of the body
A1
or no gel, majority reflection
with gel, little reflection
when wave travels in or out of the body

11 (a) (i) unwanted random power / signal / energy
(ii) loss of (signal) power / energy
(b) (i) either signal-to-noise ratio at mic. $=10 \lg \left(P_{2} / P_{1}\right)$

$$
=10 \lg \left(\left\{2.9 \times 10^{-6}\right\} /\left\{3.4 \times 10^{-9}\right\}\right)
$$

$$
=29 \mathrm{~dB}
$$

maximum length $=(29-24) / 12$ C1

$$
=0.42 \mathrm{~km}=420 \mathrm{~m}
$$

$$
\begin{align*}
& \text { or } \quad \begin{array}{l}
\text { signal-to-noise ratio at receiver }=10 \lg \left(P_{2} / P_{1}\right) \\
\text { at receiver, } 24=10 \lg \left(P /\left\{3.4 \times 10^{-9}\right\}\right) \\
P=8.54 \times 10^{-7} \mathrm{~W} \\
\text { power loss in cables }=10 \mathrm{lg}\left(\left\{2.9 \times 10^{-6}\right\} /\left\{8.54 \times 10^{-7}\right\}\right)
\end{array} \quad-52 \mathrm{dD} \tag{C1}
\end{align*}
$$

$$
\begin{align*}
\text { length } & =5.3 / 12 \mathrm{~km} \\
& =440 \mathrm{~m} \tag{A1}
\end{align*}
$$

[^0]: (correct signs essential)
 (each horizontal line correct, 1 mark - max 3)

