MARK SCHEME for the October/November 2010 question paper

for the guidance of teachers

9702 PHYSICS

9702/42 Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

	Page 2	2		rk Scheme: Tea			Syllabus	Paper	r
			GCE AS	A LEVEL – Octo	ber/November	2010	9702	42	
				5	Section A				
I	(a) for	ce per	unit mass	(ratio idea e	essential)			B1	[1]
	(b) gra		correct curva from (<i>R</i> ,1.0 ູ	ature g _s) & at least one	other correct poi	int		M1 A1	[2]
	(c) (i)			nd Moon are in op			-	M1	
		<i>or</i> so th	any other	field found by sul sensible comment where it is zero for 2 marks)	ent	eid strengti	I	A1 A0	[2]
	(ii)		/ x ² = GM _M / × 10 ²⁴) / (7.4 54 R _E	$(D-x)^2$ $4 \times 10^{22}) = x^2 / (60)$	$(R_{\rm E}-x)^2$			C1 C1 A1	[3]
	(iii)	grap	g_{E} and g_{N}	east ⅔ distance to ₁ in opposite direo urvature (by eye)	ctions	urface		B1 M1 A1	[3]
2	(a) (i)	no fo	orces (of attr	action or repulsic	n) between atom	ns / molecu	les / particle	s B1	[1]
	(ii)		of kinetic ar to random m	nd potential energ notion	y of atoms / mole	ecules		M1 A1	[2]
	(iii)	•	•	energy increases	s with temperatur	е		M1	
			otential ener ncrease in te	gy emperature increa	ases internal ene	rgy)		A1	[2]
	(b) (i)	zero						A1	[1]
	(ii)	work	done = $p\Delta$	V				C1	
				$0 imes 10^5 imes 6 imes 10^{-4}$	ny sian)			A1	101
	/		- 240	ugilore a	iny signj				[2]
	(iii)		change	work done / J	heating / J		in internal rgy / J		

change	work done / J	neating / J	energy / J
$P \rightarrow Q$ $Q \rightarrow R$ $R \rightarrow P$	+240	600	-360
	0	+720	+720
	-840	+480	-360

(correct signs essential) (each horizontal line correct, 1 mark – max 3)

B3 [3]

				.		
	Pa	ige 3	3	Mark Scheme: Teachers' versionSyllabusGCE AS/A LEVEL – October/November 20109702	Paper 42	,
				GCE AS/A LEVEL - October/November 2010 9702	42	
3	(a)	(i)	reso	nance	B1	[1]
		(ii)	amp	itude 16mm and frequency 4.6Hz	A1	[1]
	(b)	(i)	a =	$(-)\omega^2 x$ and $\omega = 2\pi f$	C1	
				$4\pi^2 \times 4.6^2 \times 16 \times 10^{-3}$	C1	
			=	13.4 m s ⁻²	A1	[3]
		(ii)	F =	<i>ma</i> 150 × 10 ⁻³ × 13.4	C1	
				2.0N	A1	[2]
	(c)			ys 'below' given line and never zero	M1	
		pea	ak is a	t 4.6 Hz (or slightly less) and flatter	A1	[2]
4	(a)	cha	arge /	potential (difference) (ratio must be clear)	B1	[1]
	. ,		U			
	(b)	(i)	V = 0	$Q / 4\pi \varepsilon_0 r$	B1	[1]
		(ii)	C = 0	$Q/V = 4\pi\epsilon_0 r$ and $4\pi\epsilon_0$ is constant	M1	
		• •	so C		A0	[1]
		(1)	r = 0	$\epsilon / 4\pi \varepsilon_0 r$	C1	
	(0)	(1)		5.8×10^{-12}) / ($4\pi \times 8.85 \times 10^{-12}$)	C1	
			= 6.1	× 10 ⁻² m	A1	[3]
		(ii)	Q =	$CV = 6.8 \times 10^{-12} \times 220$		
		(,	-	$= 1.5 \times 10^{-9} \text{ C}$	A1	[1]
	<i>.</i>		. /	-10^{-12}		
	(d)	(1)	V = 0 = 83	Q/C = (1.5 × 10 ⁻⁹) / (18 × 10 ⁻¹²) V	A1	[1]
		(ii)	eithe	r energy = $\frac{1}{2}CV^2$	C1	
		(")	Guile	$\Delta E = \frac{1}{2} \times 6.8 \times 10^{-12} \times 220^2 - \frac{1}{2} \times 18 \times 10^{-12} \times 83^2$	C1	
				= 1.65 × 10 ⁻⁷ – 6.2 × 10 ⁻⁸ = 1.03 × 10 ⁻⁷ J	A1	[3]
			or	$= 1.03 \times 10^{-3}$ energy = $\frac{1}{2}$ QV	(C1)	[0]
				$\Delta E = \frac{1}{2} \times 1.5 \times 10^{-9} \times 220 - \frac{1}{2} \times 1.5 \times 10^{-9} \times 83$	(C1)	
				$= 1.03 \times 10^{-7} \mathrm{J}$	(A1)	

Paç		ge 4		Mark Scheme: Teachers' version	Syllabus	Paper	
				GCE AS/A LEVEL – October/November 2010	9702	42	
5	(a)	field	d into	(the plane of) the paper		B1	[1]
	(b)		² / r = = (20	e to magnetic field <u>provides</u> the centripetal force Bqv 0 × 1.66 × 10 ⁻²⁷ × 1.40 × 10 ⁵) / (1.6 × 10 ⁻¹⁹ × 6.4 × 10 ⁻¹ 454 T	²)	B1 C1 B1 A0	[3]
	(c)	(i)	<u>sem</u>	icircle with diameter greater than 12.8 cm		B1	[1]
		(ii)	new	flux density = $\frac{22}{20} \times 0.454$		C1	
		()		20			101
				B = 0.499 T		A1	[2]
6	(a)	(i)	e.g.	prevent flux losses / improve flux linkage		B1	[1]
		(ii)	e.m.	in core is changing f. / current (induced) <u>in core</u> ced current in core causes heating		B1 B1 B1	[3]
	(b)	(i)		value of the direct current producing same (mean) pov resistor	ver / heating	M1 A1	[2]
		(ii)	•	er in primary = power in secondary $_{P} = V_{S} I_{S}$		M1 A1	[2]
7	(a)	(i)	e.g.	electron / particle diffraction		B1	[1]
		(ii)	e.g.	photoelectric effect		B1	[1]
	(b)	(i)	6			A1	[1]
		(ii)	$\lambda = I$	nge in energy = 4.57×10^{-19} J hc / E		C1	
			= (6. = 4.4	$.63 imes 10^{-34} imes 3.0 imes 10^8)$ / (4.57 $ imes 10^{-19}$) 4 $ imes 10^{-7}$ m		A1	[2]
8	(a)	-	-	of a heavy nucleus (<i>not atom/nuclid</i> e) (lighter) nuclei of <u>approximately same mass</u>		M1 A1	[2]
	(b)	¹ n 42He 73Li		(allow $\frac{4}{2}\alpha$)		M2 A1	[3]
	(c)	emitted particles have kinetic energy			. , ,	B1	
		range of particles in the control rods is short / particles stopped in rods / lose kinetic energy in rods				B1	
		kine	etic ei	nergy of particles converted to thermal energy		B1	[3]

	Page 5		5	Mark Scheme: Teachers' version	Syllabus	Paper	•
				GCE AS/A LEVEL – October/November 2010	9702	42	
				Section B			
9	(a)	(i)	non-	inverting (amplifier)		B1	[1]
		(ii)	(G =) 1 + R_2 / R_1		B1	[1]
	(b)	(i)		= 1 + 100 / 820 ut = 17 mV		C1 A1	[2]
		(ii)	(1 +	R_1 scores 0 in (a)(ii) but possible 1 mark in each of (b R_1 / R_2) scores 0 in (a)(ii) , no mark in (b)(i) , possible 1 R_2 / R_1) or R_1 / R_2 scores 0 in (a)(ii) , (b)(i) and (b)(ii))	mark in (b)(ii)	A1	[1]
10	(a)	(i)	dens	sity × <u>speed of wave</u> (in the medium)		B1	[1]
		(ii)	ρ = =	$(7.0 \times 10^{6}) / 4100$ 1700 kg m ⁻³		A1	[1]
	(b)	(i)	I = I	$_{\rm T}$ + $I_{\rm R}$		B1	[1]
		(ii)	1. α	$= (0.1 \times 10^{6})^{2} / (3.1 \times 10^{6})^{2}$ = 0.001		C1 A1	[2]
			2. α	≈ 1		A1	[1]
	(c)	eith or		very little transmission at an air-skin boundary (almost) complete transmission at a gel-skin boundary when wave travels in or out of the body no gel, majority reflection with gel, little reflection when wave travels in or out of the body	,	M1 A1 (M1) (M1) (A1)	[3]
11	(a)	(i)	unwa	anted random power / signal / energy		B1	[1]
		(ii)	loss	of (signal) power / energy		B1	[1]
	(b)	(i)	eithe	er signal-to-noise ratio at mic. = $10 \lg (P_2 / P_1)$ = $10 \lg (\{2.9 \times 10^{-6}\} / \{$ = $29 dB$ maximum length = $(29 - 24) / 12$ = $0.42 \text{ km} = 420 \text{ m}$	[3.4 × 10 ⁻⁹ })	C1 A1 C1 A1	[4]
			or	signal-to-noise ratio at receiver = $10 \lg (P_2 / P_1)$ at receiver, $24 = 10 \lg (P / \{3.4 \times 10^{-9}\})$ $P = 8.54 \times 10^{-7} W$ power loss in cables = $10 \lg (\{2.9 \times 10^{-6}\} / \{8.54 \times 1)$ = 5.3 dB length = $5.3 / 12 \text{ km}$ = 440 m	IO ⁻⁷ })	(C1) (A1) (C1) (A1)	

Pa	ige 6	6 Mark Scheme: Teachers' version		Syllabus	Paper	•
		GCE AS	/A LEVEL – October/November 2010	9702	42	
	coup	an amplifier led to the m eater amplifi	icrophone ers scores no mark)		M1 A1	[2]
12 (a)	satellite re signal am at a differ different f e.g. of fre	eceives gre pplified and ent (carrier requencies quencies u	nitted from Earth to satellite atly attenuated signal transmitted <u>back to Earth</u>) frequency prevent swamping of uplink signal sed (6/4 GHz, 14/11 GHz, 30/20 GHz) any two other for additional physics)	(1) (1) (1) (1)	B1 B1 B2	[4]
(b)	0	e.g.	much shorter time delay because orbits are much lower whole Earth may be covered in several orbits / with network <i>either</i> must be tracked		M1 A1 (M1) (A1)	
	uisauvain	laye. e.y.	or limited use in any one orbit more satellites required for continuous of	operation	M1 A1	[4]