MARK SCHEME for the October/November 2010 question paper for the guidance of teachers

9702 PHYSICS

9702/51 Paper 5 (Planning, Analysis and Evaluation), maximum raw mark 30

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2010	9702	51

1 Planning (15 marks)

Defining the problem (3 marks)

P1 f is the independent variable and V is the dependent variable or vary f and measure V [1]
P2 Keep the current in coil X constant
P3 Keep the number of turns on coil (Y)/area of coil Y constant Do not credit reference to coil X only.

Methods of data collection (5 marks)

M1 Two independent coils labelled X and Y .
M2 Alternating power supply/signal generator connected to coil X in a workable circuit.
M3 Coil Y connected to voltmeter/c.r.o. in a workable circuit.
M4 Use c.r.o. to determine period/frequency or read off signal generator.
M5 Method to keep current constant in coil X : adjust signal generator/use of rheostat.

Method of analysis (2 marks)

A1 Plot a graph of V against f.
A2 Relationship valid if straight line through origin

Safety considerations (1 mark)

S1 Reference to hot coils - switch off when not in use/use gloves/do not touch coils. Must refer to hot coils.

Additional detail (4 marks)

D1/2/3/4 Relevant points might include

1. Use large current in coil X /large number of coils on coil Y (to increase emf).
2. Use iron core (to increase emf).
3. Detail on measuring emf e.g. height $\times y$-gain.
4. Avoid other alternating magnetic fields.
5. Detail on measuring frequency from c.r.o. to determine period and hence f.
6. Use of ammeter/c.r.o. and resistor to check current is constant
7. Use insulated wire for coils.
8. Keep coil Y and coil X in the same relative positions.

Do not allow vague computer methods.
[Total: 15]

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2010	9702	51

2 Analysis, conclusions and evaluation (15 marks)

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2010	9702	51

	U4	Uncertainty in y-intercept	Method of determining absolute uncertainty Difference in worst y-intercept and y-intercept. Do not allow ecf from false origin read-off (FOX). Allow ecf from (c)(iv).
(d)	C3	$a=10^{\text {-intercept }}$	y-intercept must be used. Expect an answer of about 0.19 . If FOX expect answer of about 1.3.
	C4	$b=$ gradient and in the range 0.495 to 0.520 and to 2 or 3 sf	Allow 0.50 to 0.52 to 2 sf Penalise 1 sf or ≥ 4 sf
	U5	Absolute uncertainty in a and b	Difference in a and worst a. Uncertainty in b should be the same as the uncertainty in the gradient.

[Total: 15]

Uncertainties in Question 2

(c) (iii) Gradient [U3]

1. Uncertainty = gradient of line of best fit - gradient of worst acceptable line
2. Uncertainty $=1 / 2$ (steepest worst line gradient - shallowest worst line gradient)
(c) (iv) [U4]
3. Uncertainty $=y$-intercept of line of best fit $-y$-intercept of worst acceptable line
4. Uncertainty $=1 / 2(y$-intercept of steepest worst line $-y$-intercept of shallowest worst line)
(d) [U5]
5. Uncertainty $=10{ }^{\text {best } y \text {-intercept }}-10$ worst y-intercept
