UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level ## MARK SCHEME for the October/November 2006 question paper ## **5070 CHEMISTRY** 5070/02 Paper 2 (Theory), maximum raw mark 75 This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated. Mark schemes must be read in conjunction with the question papers and the report on the examination. The grade thresholds for various grades are published in the report on the examination for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses. CIE will not enter into discussions or correspondence in connection with these mark schemes. CIE is publishing the mark schemes for the October/November 2006 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses. | Page 2 | Mark Scheme | Syllabus | Paper | |--------|----------------------------|----------|-------| | | GCE O LEVEL - OCT/NOV 2006 | 5070 | 02 | ## Section A | A1(a) | (i)
(ii)
(iii)
(iv) | A/sulphur dioxide E/zinc oxide C and E/sodium bromide and zinc oxide (both required) C/sodium bromide | [1]
[1]
[1]
[1] | |-------|------------------------------|---|--------------------------| | (b) | | CH ₂ Br | [1] | | (c) | | by (incomplete) combustion of fossil fuels/hydrocarbons/carbon source ALLOW: from car exhausts/engines; gas fires/boilers NOT: from cars/vehicles (alone) | [1] | | | | NOT: combustion (alone) | [Total 6] | | A2(a) | (i) | the <u>more</u> reactive the metal the <u>higher</u> the (decomposition) temperature/the less readily the carbonate is decomposed (or reverse argument) NOTE: comparison essential NOT: the smaller the cation, the lower the decomposition temperature | [1] | | | (ii) | $MgCO_3 \rightarrow MgO + CO_2$ (ignore state symbols) | [1] | | (b) | (i)
(ii) | to produce <u>more</u> petrol/ <u>more</u> of the useful fractions/ <u>more</u> of the petrol fraction/to produce ethene/alkenes/fractions with higher demand ALLOW: produce <u>more</u> smaller molecules ALLOW: to produce plastics NOT: more profitable NOT: produces smaller molecules/break down petrol fractions. <u>high</u> temperature; ALLOW: 350-550°C | [1] | | | | catalyst; ALLOW: aluminium oxide/alumina | [2] | | | (iii) | IGNORE: pressure 2C ₂ H ₄ /C ₄ H ₈ on right | [1]
[Total 6] | | A3(a) | | 225 seconds ALLOW: 220-230 (s) | [1] | | (b) | | 90/24000 = 0.0038 moles/3.75x10 ⁻³ (moles) | [1] | | (c) | | gradient greater at start; | | | | | ends up at the same volume (90cm³) + flattens out NOT: line goes well above 90 cm³ then drops down again | [2] | | (d) | | HCl particles/H ⁺ ions closer together when solution more concentrated OR more H ⁺ ions/HCl particles for given volume; NOT: more moles means more particles/more H ⁺ ions more frequent collisions (with calcium carbonate); NOT: more successful collisions NOT: more chance of collisions | [2]
[Total 6] | | Page 3 | Mark Scheme | Syllabus | Paper | |--------|----------------------------|----------|-------| | | GCE O LEVEL - OCT/NOV 2006 | 5070 | 02 | | A4(a) | light bulbs/fluorescent tubes/lasers/provides inert atmosphere/in arc welding/refining of titanium OR zirconium NOT: lights (alone)/bulbs (alone) | | | | rc [1] | | |-------|---|--|--|----------------------------------|--------------------|------------------| | (b) | | complete/full outer electron shell ALLOW: atoms cannot gain/lose/share electrons (easily) NOT: 8 electrons in outer shell unless specify He with 2 NOT: reference to stability | | | [1] | | | (c) | _ | | | | | | | | | isotope | number of protons | number of electrons | number of neutrons | | | | | ³⁶ Ar | 18 | 18 | 18 | | | | | ⁴⁰ Ar | 18 | 18 | 22 | | | | | 6 boxes co | rrect = 2 marks; | 5 boxes correct = | 1 mark | [2] | | (d) | | elements in number of p | | arranged in order o | f atomic number/ | | | | | | have different am | ount of isotopes | | [1] | | (e) | | Xe + 2F ₂ | \rightarrow XeF ₄ | | | [1] | | (f) | | NOT: belov | orrect position dra | _ | | [1] | | | | NOT. VOILE | ally down/lacing | downwards | | [Total 7] | | A5(a) | (i) | 20% | | | | | | | (ii) | ALLOW: 19 add (aqueo | | oxide/(aqueous) ar | nmonia; | [1] | | | | ALLOW: fo
red-brown p
NOT: red p | precipitate/red-br | own solid | | [2] | | (b) | (i) | ALLOW: filt
ALLOW: se | edimentation | | | [1] | | | (ii) | $Al_2(SO_4)_3$ | ifugation/distillation | on/decanting | | [1] | | (c) | (i) | | astes/odours | | | [1] | | | (ii) | | osorbs colours
ria/sterilise water | disinfect water | | [1] | | | | | kill micro-organis
get rid of bacteri | | | | | (d) | (i) | | 2HCl → CaCl ₂ | ₂ + 2H ₂ O | | [1] | | | (ii) | OH⁻ + H⁺ | → n ₂ U | | | [1]
[Total 9] | | | | | | | | | | Page 4 | Mark Scheme | Syllabus | Paper | |--------|----------------------------|----------|-------| | | GCE O LEVEL - OCT/NOV 2006 | 5070 | 02 | | A6(a) | | correct structure showing 4 paired dots and crosses | [1] | |-------|-------|---|-------------------| | (b) | (i) | vibrating/not moving;
regular arrangement/lattice | [2] | | | (ii) | ALLOW: closely packed Any two of: pressure decreases (as ice melts)/ ALLOW: low pressure temperature increases/ ALLOW: high temperature | ι-, | | | (iii) | the forces between the molecules are weak NOT: methane hydrate is unstable methane causes global warming/melting of (polar) ice caps/melting of glaciers/desertification/rise in sea levels/extreme climate changes/ | [2] | | | | change in animal habitats | [1] | | (c) | | (bacterial) decomposition of vegetable waste/paddy fields/marshes/
cow flatulence/landfill sites etc
ALLOW: bacterial decomposition | [1] | | (d) | | fuel/making synthesis gas/manufacture of ethyne/making carbon black/making hydrogen cyanide/making methanol ALLOW: (for) heating/(for) cooking NOT: as household gas/natural gas NOT: from petroleum refining/fossil fuels | [1] | | (e) | | reactants on left and products on right; product level below reactant level <u>and</u> ΔH correctly labelled; activation energy correctly labelled; | [3]
[Total 11] | | | | TOTAL PART A = 45 | | | B7(a) | | nitrogen has gained electrons/oxidation number of nitrogen has decreased; ALLOW: reduction is addition of electrons ALLOW: N changes from 0 to -3 NOT: removal of oxygen/addition of hydrogen | [1] | | (b) | | $2NO_3^- + 12H^+ + 10e^- \rightarrow N_2 + 6H_2O$ | [1] | | (c) | (i) | nitrogen from the air/atmosphere;
hydrogen from methane/natural gas/water/cracking <u>hydrocarbons</u> ;
IF: (nitrogen and hydrogen) from the air = 1 | [2] | | | (ii) | Any two of the following specified conditions: range 380-450°C/ ALLOW: any specific temperature in range 350-480°C; NOT: high temperature pressure 200 atm/ ALLOW: any pressure in range between 180-220 atm; NOT: high pressure iron catalyst; NOT: catalyst/iron oxide catalyst | [2] | | Page 5 | | Mark Scheme | Syllabus | Paper | |--------|---|---|--------------------|--------------------| | | | GCE O LEVEL - OCT/NOV 2006 | 5070 | 02 | | (d) | | correct molar masses i.e. 80 and 132;
ammonium nitrate: (28/80) x 100 = 35%;
ammonium hydrogen phosphate: (28/132) x 100 | = 21.2%/21%; | [3] | | (e) | eutrophication/increase in algal growth (on surface of water)/algal bloom/reduction of dissolved oxygen in water/water plants die | | | [1] | | | | | | [Total 10] | | B8(a) | | $2ZnS + 3O_2 \rightarrow 2ZnO + 2SO_2$ | | [1] | | (b) | (i) | more moles/molecules of gas on left than on right ALLOW: 3 volumes (of gas) on left and 2 on right/on left than right | more volumes o | [1]
f gas | | | (ii) | increase in pressure will not have much effect on r
difference in number of moles on each side of equ
OR | | ch | | | | higher pressure means higher concentration of con
ALLOW: sulphur dioxide/trioxide is very corrosive
OR | rrosive gases | | | | | cheaper/more economic to carry out reaction at at | mospheric press | sure
[1] | | | (iii) | reaction is exothermic/ ΔH is negative; if heat given out equilibrium shifts to left/reaction s reactants/cooling favours the forward reaction | hifts in favour of | [2] | | (c) | | filter solution (to remove excess iron);
concentrate solution by warming/letting solution ever
evaporate solution (then leave to crystallise)
ALLOW: leave to crystallise
NOT: evaporate to dryness | /aporate/partially | /
[2] | | (d) | | moles NaOH = 0.15 x 20/1000 = 3 x 10^{-3} mol;
moles H ₂ SO ₄ = 3x 10^{-3} x $\frac{1}{2}$ = 1.5 x 10^{-3} mol; | | ro1 | | | | $1.5 \times 10^{-3} \times 1000/12 = 0.125 \text{ (mol/dm}^3\text{)}$ | | [3]
[Total 10] | | B9(a) | | ect structure of butanoic acid (all atoms and bonds r
OW: OH in place of O – H | nust be shown) | [1] | | (b) | (i) | not completely ionised in solution/has high proport molecules in solution/has small proportion of H ⁺ io | | | | | (ii) | not fully dissociated
test with universal indicator/pH meter;
ALLOW: test with pH paper
NOT: test with indicator paper | | [1] | | | | has pH between greater than 3 <u>and</u> less than 7/sta
OR solution of the acid turns universal indicator ye
NOT: has high pH/pH above 3 (alone) | | ange
[2] | | (c) | | C = 0.18/12 H = 0.03/1 O = 0.08/16;
empirical formula = C_3H_6O ;
molecular formula = $C_6H_{12}O_2$ (1 mark) | | [2]
[1] | | Page 6 | Mark Scheme | Syllabus | Paper | |--------|----------------------------|----------|-------| | | GCE O LEVEL - OCT/NOV 2006 | 5070 | 02 | | (d) | (i)
(ii) | $C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$ potassium dichromate + (concentrated) sulphuric acid; ALLOW: other reasonable oxidising agents | [1] | |--------|-------------|---|------------| | | | heat/reflux/warm ALLOW: bacteria; | [2] | | | | room temperature/stated temperature not above 45°C or below 5°C | [Total 10] | | B10(a) | | Any three of: anode/impure copper electrode: decreases in thickness/solid (impurities) deposits below the anode/anode gets smaller/anode dissolves; cathode: copper deposited/increases in thickness/gets larger; ALLOW: goes pink anode: Cu → Cu ²⁺ + 2e ⁻ ; | | | | | cathode: Cu ²⁺ + 2e ⁻ → Cu | [3] | | (b) | (i) | (some of the) electrons in metals are delocalised/electrons are (free to) move/sea of electrons can move NOT: electrons are free | [1] | | | (ii) | solid copper sulphate has ions in fixed position/not free to move/
ions which don't move/held in the (crystal) lattice;
REJECT: do not have ions | | | | | in solution ions are free to move/ions move
NOT: the ions are free | [2] | | | | (reference to electrons = 0 for the second mark) | | | (c) | | iron object/knife made the cathode/made the negative electrode; anode is nickel + solution of nickel salt (both points needed); ALLOW: nickel nitrate/nickel sulphate/nickel chloride/other soluble nickel compound NOT: nickel oxide/nickel hydroxide | [2] | | (d) | | in copper metal atoms/ions/particles arranged in layers which can
slide/slip over each other; (both 'layers' and 'slide/slip' needed);
NOT: layers move
ACCEPT: diagrams if reasoning clear | | | | | in alloy <u>different sized</u> atoms/ions/particles stop layers from slipping/
2 nd type of atom/ions/particles disrupts the regular structure of the metal | [2] | | | | ACCEPT: diagrams if reasoning clear | | | | | | [Total 10] |