UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

MARK SCHEME for the October/November 2009 question paper for the guidance of teachers

5070 CHEMISTRY

5070/02

Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

[1]

	Pa	ge 2			Teachers' version		Syllabus	Paper
			GC	E O LEVEL – Od	tober/November 2	2009	5070	02
A 1	(a)	(i)	ethene					[1]
		(ii)	sodium iodide	•				[1]
		(iii)	ammonium s	ulfate				[1]
		(iv)	nitrogen(IV)	oxide				[1]
		(v)	calcium oxide	;				[1]
		(vi)	calcium oxide	:				[1]
	(b)			ning two (or more ces to a mixture	e) elements / differe	ent atoms	combined/ bond	ed / joined [1]
	(c)	IGN NO	ORE: charged : strong elect	d particles rostatic forces be	n in solid / in lattice etween ions	;		[1]
		ions NO	can move in : ions free	ce to electrons solution / are mo	bile in solution			[1]
								[Total: 9]
A2	(a)	ALL IGN	$_{12}O_6 \rightarrow 2C_2H_0$ OW: C_2H_0O for ORE : word expressions.	or ethanol quation				[1]
	(b)		entation ECT: ferment	ation + respiratio	n			[1]
	(c)	incr	eases then c	ecreases / at h	nt lower temperaturigh(er) temperatur h(er) temperatures	, .		•
	(d)		ıl gradient gre hes at <u>same</u> t	ater <u>and</u> starts a inal volume	t 0,0;			[1] [1]
								[Total: 6]
А3	(a)	nitro	gen 79% <u>and</u>	oxygen 20%				[1]
	(b)	(i)	numbers of n	eutrons / nucleor	ime proton number ns / mass number nbers of neutrons	er / same	atomic number	with different [1]

(ii) 18 electrons and 22 neutrons

Paper

Syllabus

IGNO IGNO IGNO IGNO IGNO IGNO IGNO IGNO	Head of the social experiments of the socia	prevent oxygen read	otor	02 [1] [1] [1] [Total: 8]
IGNO IGNO IGNO IGNO IGNO IGNO IGNO IGNO	PRE: word equation PRE: state symbols Event the sodium oxidising/ to PW: air in place of oxygen argon is unreactive Correct relative atomic mass; 5/131; O = 1.2/16; F = 5.7/1 5; O = 0.075; F = 0.3 Itio from this division; D = 1; F = 4 Perf from step 1 Trmula XeOF ₄ (any order) The water to) produce hydroxid ion acceptor mydroxide ions produced cts with water unqualified / it is	le <u>ions</u> / proton accep	otor	[1] [1] [1] [Total: 8]
ALLO NOT ivide by e = 9.82 e = 0.07 orrect ra e = 1; (LLOW: orrect for eacts w ydrogen LLOW: IOT: rea	argon is unreactive correct relative atomic mass; 5/131; O = 1.2/16; F = 5.7/1 5; O = 0.075; F = 0.3 tio from this division; 0 = 1; F = 4 ecf from step 1 rmula XeOF ₄ (any order) th water to) produce hydroxid ion acceptor hydroxide ions produced ets with water unqualified / it is	le <u>ions</u> / proton accep	otor	[1] [1] [Total: 8]
e = 9.82 e = 0.07 orrect ra e = 1; (LLOW: orrect for eacts w ydrogen LLOW: IOT: rea	5/131; O = 1.2/16; F = 5.7/15; O = 0.075; F = 0.3 tio from this division; O = 1; F = 4 ecf from step 1 rmula XeOF ₄ (any order) th water to) produce hydroxidion acceptor hydroxide ions produced cts with water unqualified / it is	e <u>ions</u> / proton accep		[1] [1] [Total: 8]
e = 1; (LLOW: orrect for eacts w ydrogen LLOW: IOT: rea	th water to) produce hydroxid ion acceptor hydroxide ions produced to with water unqualified / it is			[1] [Total: 8]
eacts w ydrogen LLOW: IOT: rea	rmula XeOF ₄ (any order) th water to) produce hydroxid ion acceptor nydroxide ions produced cts with water unqualified / it is			[Total: 8]
ydrogen LLOW: IOT: rea	ion acceptor nydroxide ions produced cts with water unqualified / it is			
ydrogen LLOW: IOT: rea	ion acceptor nydroxide ions produced cts with water unqualified / it is			[1]
~~~\\ ~~				
	en precipitate / precipitate / blue-green prec	sipitate / yellow greer	ı ppt	[1]
noles me GNORE	thylamine = 6.2/31 = 0.2; units			[1]
LLOW: .CCEPT	ecf 4.8 alone	3 dm ³		[1]
			reaction	[1]
240 I ALLO NOT ALLO <b>or us</b> 240 I 7500	g methanol $\rightarrow$ 232.5 kg / 232 DW: 232.5 / 233 232.5 g DW: ecf from wrong molar masing moles g methanol = 240 000 / 32 = mol methanol $\rightarrow$ 7500 × 31 =	500 g methylamine; sses 7500 mol;		[1] [1]
ol L C IC	ume of LOW: 6 CEPT: T: 4.8 subst ALLC 32 (g 240 k ALLC or us 240 k 7500 ALLC NOT: NOT: NOT:	ume of methylamine = 0.2 × 24 = 4.8 LOW: ecf ECEPT: 4.8 alone DT: 4.8 cm³  substance which speeds up a reach ALLOW: substance which changes 32 (g) of methanol → 31 (g) methy 240 kg methanol → 232.5 kg / 232 ALLOW: 232.5 / 233 NOT: 232.5 g ALLOW: ecf from wrong molar massor using moles 240 kg methanol → 7500 × 31 = 7500 mol methanol → 7500 × 31 = ALLOW: 232.5 g NOT: 232.5 g NOT: 240 (kg)	ume of methylamine = 0.2 × 24 = 4.8 dm ³ LOW: ecf CCEPT: 4.8 alone OT: 4.8 cm ³ substance which speeds up a reaction ALLOW: substance which changes the speed / rate of ra	ume of methylamine = $0.2 \times 24 = 4.8 \text{ dm}^3$ LOW: ecf CCEPT: $4.8 \text{ alone}$ or: $4.8 \text{ cm}^3$ substance which speeds up a reaction ALLOW: substance which changes the speed / rate of reaction $32 \text{ (g) of methanol} \rightarrow 31 \text{ (g) methylamine;}$ $240 \text{ kg methanol} \rightarrow 232.5 \text{ kg} / 232 500 \text{ g methylamine;}$ ALLOW: $232.5 \text{ / } 233$ NOT: $232.5 \text{ g}$ ALLOW: ecf from wrong molar masses or using moles 240  kg methanol = 240 000 / 32 = 7500  mol; $7500 \text{ mol methanol} \rightarrow 7500 \times 31 = 232.5 \text{ kg} / 232 500 \text{ g;}$ ALLOW: $232.5 \text{ g}$

Mark Scheme: Teachers' version

Page 3

[Total: 7]

	Pa	ge 4	Mark Scheme: Teachers' version	Syllabus	Paper
			GCE O LEVEL – October/November 2009	5070	02
A5	(a)	ALLOW IGNORE	Cl ₂ → 2KCl + Br ₂ : ionic equation / multiples E: word equation E: state symbols		[1]
	(b)	ALLOW turns gre ALLOW	d) potassium dichromate; : (acidified) potassium manganate(VII) / potassium per een; : (for permanganate) turns colourless / decolourises E: starting colour	manganate	[1] [1]
	(c)	•	ALLOW 2 to 4 (actual is 3.12); point: ALLOW 20 –120 (actual is 59)		[1] [1]
	(d)	bromine broken; ALLOW	tion of evaporation e.g. <u>particles</u> (or <u>molecules</u> ) with a particles break free from each other / forces or bond: <u>particles</u> (or <u>molecules</u> ) of bromine escape from liquid	s between brom	
		diffusion REJECT explana e.g. rand collision bromine IGNORE	articles evaporate in / diffuse; IT: Brownian motion ition of diffusion involving qualified movement of molecule dom movement of molecules / molecules move anyw is / particles disperse / particles travel throughout the inparticles; It molecules move from area of high concentration to the other side of the room	here / molecules room / constant	motion of the [1]
					[Total: 8]
<b>A</b> 6	(a)	ALLOW rays (too muc	e absorbs OR traps <u>ultra violet</u> radiation / it absorbs ult : uv for ultraviolet : protects against uv rays / prevents uv rays getting to ch) ultra violet radiation can cause skin cancer / cataract : uv is harmful to skin / causes skin burns	o (Earth's) surfa	[1] ce / blocks uv [1]
	(b)		3O ₂ E: state symbols E: word equation		[1]
	(c)	ALL ALL ALL NO	e from early 1980's to 1988 / just before 1990; OW: rose to 1987 OR1989 / rose to just before 1990. OW: there was an increase in CFCs in the 1980's. OW: rose to a peak in 1988. T: increased until 1990. In declined / lowers OR decreases after 1987 or 1988. O's	or 1989 / from	[1] the end of the [1]

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – October/November 2009	5070	02

- (ii) Any 2 sensible suggestions which include relevant dates e.g.
  - relates drop in amount of ozone between 1980 and 1988 to increase in CFC production;
  - level of ozone from 1998 to 2002 has slightly increased when CFC production had remained low or decreased
  - CFC production dropped significantly from 1988 to 1998 but so did the amount of ozone;
  - level of ozone from 1998 to 2006 has been very variable and no definite correlation with decrease CFC production

[Total: 7]

[4]

[2]

#### B7 (a) ANY 4 of:

power source / battery connected to electrodes dipping in electrolyte;

ALLOW: from diagram

REJECT: wrong electrolyte / carbon electrodes

- anode impure copper and cathode pure copper;
- cathode increases in size / mass <u>and</u> anode decreases in size / mass; ALLOW: copper deposits on cathode and removed from anode
- cathode reaction: Cu²⁺ + 2e⁻ → Cu;
   ALLOW: e for electron / -2e on right
- anode reaction: Cu → Cu²⁺ + 2e⁻
   ALLOW: e for electron / –2e on left

NOTE: both equations correct but anode reaction and cathode reaction the wrong way round gains 1 mark only

(b) (i) 
$$4OH^- \rightarrow 2H_2O + O_2 + 4e^-$$
 [1] ALLOW:  $4OH^- - 4e^- \rightarrow 2H_2O + O_2$  ALLOW: multiples

(ii) copper ions in solution not replaced / reduction in amount of copper ions available; [1]

NOT: anode is not copper

NOT: because the copper is being used up

NOT: because copper ions are reduced to copper at the cathode

(c) (i) 1 mark for each catalyst with its correct product:

e.g. iron for making ammonia / ALLOW: iron oxide

nickel for making margarine / hydrogenation of alkenes / making alkanes

vanadium(V) oxide for making sulfur trioxide / sulfuric acid

ALLOW: vanadium oxide NOT: wrong oxidation state

ALLOW: platinum for SO₃ / sulfuric acid / nitric acid

NOT: for Haber process / for Contact process

(ii) any two properties of transition metals other than catalyst e.g.

variable oxidation number OR variable oxidation state OR form more than one sort of ion / variable valency

form coloured compounds or coloured ions

form complex ions ALLOW: high density

ALLOW: high melting or high boiling points

[Total: 10]

[2]

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – October/November 2009	5070	02

**B8** (a) orange / red / brown colour of bromine;

decolorised / goes colourless (when fumaric acid added);

REJECT: becomes discoloured

$$(C_4H_4O_4 + Br_2 \rightarrow) C_4H_4O_4 Br_2 / (HO_2CH = CHCO_2H + Br_2 \rightarrow) -CHBr$$
——CHBr—
[1]

ALLOW: from altered diagram

**(b)** moles sodium hydroxide = 
$$0.018 \times 0.2 = 3.6 \times 10^{-3}$$
; [1]

moles fumaric acid =  $\frac{1}{2}$  answer to first mark; [1]

ALLOW: ecf

concentration of fumaric acid = (1000/60 × answer to second mark)  $[(1000/60) \times 1.8 \times 10^{-3}] = 0.03 \text{ mol/ dm}^3$ [1] ALLOW: ecf

OR

$$\frac{C_1V_1}{C_2V_2} = \frac{0.2 \times 18}{C_2 \times 60}$$
 (1 mark for working as shown)

$$\frac{C_1V_1}{C_2V_2} = \frac{n_1}{n_2} \qquad \frac{0.2 \times 18}{C_2 \times 60} = \frac{2}{1} \text{ (2 marks for working as shown)}$$

Correct answer = 3rd mark

(d) clothing / ropes / fishing lines / fishing nets / stockings / parachutes / toothbrush (bristles) / balloons / guitar strings / racquet strings / petrol tanks [1]

**ALLOW: fabrics** 

IGNORE: fibres without qualification

- (e) Any two environmental problems e.g.
  - burning causes poisonous or harmful fumes / acidic fumes NOT: references to carbon dioxide / soot / pollution
  - fills up landfill sites / not enough landfill sites / difficulty to store waste
  - litter / just thrown away / eyesore
  - trap animals or birds / harms organisms in sea ALLOW: harms or kills wildlife
  - blocks drains OR streams [2]

[Total: 10]

[2]

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – October/November 2009	5070	02

#### B9 (a) Any two of:

- carbon dioxide + water (combine);
- to form glucose + oxygen;
- in presence of chlorophyll / sunlight

  ALLOW: information from word a question or complete a question with correct formation.

ALLOW: information from word equation or symbol equation with correct formulae

(b) correct dot and cross diagram for carbon dioxide

i.e. 4 bonding electrons between carbon and each oxygen and 4 non bonded electrons on each oxygen [1]

IGNORE: inner shell electrons

- (c) (i)  $C_8H_{18} + 12\frac{1}{2}O_2 \rightarrow 8CO_2 + 9H_2O$  (or multiple of this) [1]
  - (ii) <u>carbon dioxide</u> (produced) is a greenhouse gas / <u>carbon dioxide</u> is responsible for global warming

ALLOW: increased <u>carbon dioxide</u> levels lead to stated effect of climate change e.g. melting of polar ice / glaciers / desertification / rise in sea levels etc [1]

REJECT: statements about linking global warming / carbon dioxide to ozone layer

(d) (i) amount of bicarbonate decreases / more carbonate forms;

bonate forms; [1]

ALLOW: more water forms / more carbon dioxide forms

ALLOW: concentration of bicarbonate decreases / concentration of carbonate / water / carbon dioxide increases

position of equilibrium moves to the left / reaction moves in the in direction of decreasing concentration / when conditions in equilibrium changed the equilibrium shifts to oppose the change OWTTE;

[1]

(ii) any Group I carbonate / ammonium carbonate ACCEPT: hydrogencarbonates / correct formulae

[1]

#### (e) Any 2 of:

- sulfur dioxide in flue gases from burning of fossil fuels / named fossil fuel;
   NOT: removes sulfur dioxide from atmosphere
- sulphur dioxide reacts with calcium carbonate
- to form calcium sulfite (+ carbon dioxide);
- calcium sulfite reacts (with oxygen and water) to form calcium sulfate;
- removal of sulfur dioxide fuels reduces acid rain / reduces sulfur dioxide in atmosphere / sulfur dioxide causes acid rain
- removal of sulfur dioxide reduces <u>named effect</u> of acid rain / sulfur dioxide causes e.g. respiratory difficulties / acidification of lakes / erodes buildings or bridges / kills trees / kills animals or plant in rivers or ponds

NOT: kills plants or animals in seas / kills marine life

[Total: 10]

Page 8	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – October/November 2009	5070	02

B10(a) haematite / limonite / magnetite / siderite

[1]

- **(b)** Any 3 of:
  - calcium carbonate / limestone decomposes to calcium oxide;
  - calcium oxide reacts with silica / silicon dioxide / sand (in the ore);
  - calcium oxide is basic so reacts with acidic impurities;
  - to form a slag / calcium silicate (this mark consequential on either of the two above);
  - silicates / impurities would clog up the blast furnace if not removed

[3]

- (c) energy needed to break the bonds (in carbon and oxygen) / bond breaking is endothermic; [1] energy released on forming bonds in CO₂ / bond forming is exothermic; [1] more energy involved in bond making than bond breaking / more energy released than absorbed [1]
- (d)  $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$  [1]

 $Fe_2O_3 + 3C \rightarrow 2Fe + 3CO$  [1]

IGNORE: state symbols IGNORE: word equation

(e) remove (some) carbon / blow oxygen through (the molten iron) / react it with oxygen / use a basic oxygen converter [1]

NOT: use a furnace / use a converter

NOT: adding other metals to form stainless steel / alloys

[Total: 10]