CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

MARK SCHEME for the May/June 2014 series

4037 ADDITIONAL MATHEMATICS

4037/11 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – May/June 2014	4037	11

1	sin 0 and 0		ain ()
1	$LHS = \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{1 + \sin \theta}$	B1	B1 for use of $\tan \theta = \frac{\sin \theta}{\cos \theta}$
	$= \frac{\sin\theta(1+\sin\theta)+\cos^2\theta}{\cos\theta(1+\sin\theta)}$	M1	M1 for attempt to obtain a single fraction
	$=\frac{1+\sin\theta}{\cos\theta(1+\sin\theta)}$	DM1	DM1 for use of $\sin^2 \theta + \cos^2 \theta = 1$
	$= \frac{1}{\cos \theta} \text{ leading to } \sec \theta$	A1	A1 for 'finishing off'
	Alternative solution: $LHS = \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta (1-\sin \theta)}{(1+\sin \theta)(1-\sin \theta)}$	B1	B1 for use of $\tan \theta = \frac{\sin \theta}{\cos \theta}$
	$= \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta (1 - \sin \theta)}{\cos^2 \theta}$	M1	M1 for multiplication by $(1 - \sin \theta)$
	$= \frac{\sin \theta}{\cos \theta} + \frac{(1 - \sin \theta)}{\cos \theta}$	DM1	DM1 for use of $\sin^2 \theta + \cos^2 \theta = 1$
	$= \frac{1}{\cos \theta} \text{ leading to } \sec \theta$	A1	A1 for 'finishing off'
	Alternative solution: $LHS = \frac{\tan \theta (1 + \sin \theta) + \cos \theta}{1 + \sin \theta}$	M1	M1 for attempt to obtain a single fraction
	$= \frac{\sin \theta}{\cos \theta} + \frac{\sin^2}{\cos \theta} + \cos \theta$ $1 + \sin \theta$	B1	B1 for use of $\tan \theta = \frac{\sin \theta}{\cos \theta}$
	$=\frac{\sin\theta+\sin^2\theta+\cos^2\theta}{\cos\theta(1+\sin\theta)}$		
	$=\frac{1+\sin\theta}{\cos\theta(1+\sin\theta)}$	DM1	DM1 for use of $\sin^2 \theta + \cos^2 \theta = 1$
	$= \frac{1}{\cos \theta} \text{ leading to } \sec \theta$	A1	A1 for 'finishing off'

Page 3	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – May/June 2014	4037	11

2	(i) (ii)	$ \mathbf{a} = \sqrt{4^2 + 3^2} = 5$ $ \mathbf{b} + \mathbf{c} = \sqrt{(-3)^2 + 4^2} = 5$ $\lambda \binom{4}{3} + \mu \binom{2}{2} = 7 \binom{-5}{2}$	M1 A1	M1 for finding the modulus of either a or b + c A1 for completion
		$4\lambda + 2\mu = -35 \text{ and } 3\lambda + 2\mu = 14$	M1	M1 for equating like vectors and obtaining 2 linear equations
		leading to $\lambda = -49$, $\mu = 80.5$	DM1 A1	DM1 for solution of simultaneous equations A1 for both
3	(a)	(i) (ii) (iii)	B1 B1 B1	B1 for each
	(b) (i)	2	B1	
	(ii)	0	B1	
4		$k(4x-3) = 4x^{2} + 8x - 8$ $4x^{2} + x(8-4k) + 3k - 8 = 0$ $b^{2} - 4ac = (8-4k)^{2} - 16(3k-8)$ $= 16k^{2} - 112k + 192$ $b^{2} - 4ac < 0, k^{2} - 7k + 12 < 0$ critical values $k = 3, 4$ $\therefore 3 < k < 4$	M1 DM1 DM1 A1 A1	M1 for equating the line and the curve and attempt to obtain a quadratic equation in k DM1 for use of $b^2 - 4ac$ with k DM1 for solution of a 3 term quadratic equation, dependent on both previous M marks A1 for both critical values A1 for the range
5	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x\mathrm{e}^{x^2}$	B1B1	B1 for e^{x^2} , B1 for $2xe^{x^2}$
	(ii)	$\frac{1}{2}e^{x^2}$	M1A1	M1 for ke^{x^2} A1 for $\frac{1}{2}e^{x^2}$
	(iii)	$\left(\frac{1}{2}e^4\right) - \left(\frac{1}{2}\right) = 26.8$	DM1 A1	DM1 for correct use of limits A1 for 26.8, allow exact value

Page 4	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – May/June 2014	4037	11

6	(i)	(10 19)	M1	M1 for at least 3 correct elements of a
	(-)	$\mathbf{AR} = \begin{bmatrix} 10 & 15 \\ 32 & 37 \end{bmatrix}$		3×2 matrix
		$\mathbf{AB} = \begin{bmatrix} 32 & 37 \\ 14 & 14 \end{bmatrix}$	A1	A1 for all correct
		(14-14)		
		. 1(5 -1)	B1	1 (5 -1)
	(ii)	$\mathbf{B}^{-1} = \frac{1}{7} \begin{pmatrix} 5 & -1 \\ -3 & 2 \end{pmatrix}$	B1	B1 for $\frac{1}{7}$, B1 for $\begin{pmatrix} 5 & -1 \\ -3 & 2 \end{pmatrix}$
	(:::)	(2.1)(x) (3.1)	M1	M 6 1,
	(iii)	$2\begin{pmatrix} 2 & 1 \\ 3 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -3 \\ -22 \end{pmatrix}$	IVII	M1 for obtaining in matrix form
		$ \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{7} \begin{pmatrix} 5 & -1 \\ -3 & 2 \end{pmatrix} \begin{pmatrix} -1.5 \\ -11 \end{pmatrix} = \frac{1}{7} \begin{pmatrix} 3.5 \\ -17.5 \end{pmatrix} $	M1	M1 for pre-multiplying by B ⁻¹
		0.5	A1	A1 for both
		x = 0.5, y = -2.5	AI	AT 101 bour
7	(i)	$y = 2x^2 - \frac{1}{r+1}(+c)$	B1	B1 for each correct term
		x+1	B1	
		when $x = \frac{1}{2}$, $y = \frac{5}{6}$ so $\frac{5}{6} = \frac{1}{2} - \frac{2}{3} + c$	3.54	
		when $x = \frac{1}{2}$, $y = \frac{1}{6}$ so $\frac{1}{6} = \frac{1}{2} - \frac{1}{3} + C$	M1	M1 for attempt to find $+c$, must have at least 1 of the previous B marks
		leading to $c=1$	A1	Allow A1 for $c = 1$
		$\left(y = 2x^2 - \frac{1}{x+1} + 1\right)$		
		x+1)		
	(ii)	When $x = 1, y = \frac{5}{2}$	M1	M1 for using $x = 1$ in their (i) to find y
	(-)	'		
		$\frac{dy}{dx} = \frac{17}{4}$ so gradient of normal $= -\frac{4}{17}$	B1	B1 for gradient of normal
		Equation of normal $y - \frac{5}{2} = -\frac{4}{17}(x-1)$	DM1	DM1 for attempt at normal equation
		(8x + 34y - 93 = 0)	A1	A1 – allow unsimplified
				(fractions must not contain decimals)

Page 5	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – May/June 2014	4037	11

8	(i)	$\log p = n \log V + \log k$	B1	B1 for statement, but may be implied by later work.
		lnV 2.30 3.91 4.61 5.30		
		lnp 4.55 2.14 1.10 0.10		
		lgV 1 1.70 2 2.30		
		lgp 1.98 0.93 0.48 0.04		
		$\log P$	M1 A2,1,0	M1 for plotting a suitable graph -1 for each error in points plotted
	(ii)	Use of gradient = n n = -1.5 (allow -1.4 to -1.6)	DM1 A1	DM1 for equating numerical gradient to <i>n</i>
	(iii)	Allow 13 to 16	DM1 A1	DM1 for use of <i>their</i> graph or substitution into <i>their</i> equation.
9	(a)	Distance travelled = area under graph $= \frac{1}{2} (60 + 20) \times 12 = 480$	M1 A1	M1 for realising that area represents distance travelled and attempt to find area
	(b)	2	B1 B1 B1	B1 for velocity of 2 ms ⁻¹ for $0 \le t \le 6$ B1 for velocity of zero for <i>their</i> '6' to <i>their</i> '25' B1 for velocity of 1 ms ⁻¹ for $25 \le t \le 30$
	(c) (i)	$v = 4 - \frac{16}{t+1}$	M1	M1 for attempt at differentiation
		When $v = 0$, $t = 3$	DM1 A1	DM1 for equating velocity to zero and attempt to solve
	(ii)	$a = \frac{16}{(t+1)^2}$ $0.25(t+1)^2 = 16$ $t = 7$	M1	M1 for attempt at differentiation and equating to 0.25 with attempt to solve
		$0.25(t+1)^2 = 16$		
		t=7	A1	

Page 6	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – May/June 2014	4037	11

10	(a)	1 digit even numbers 2	B1	
		2 digit even numbers $4 \times 2 = 8$	B1	
		3 digit even numbers $3 \times 3 \times 2 = 18$	B1	
		Total = 28	B1	
	(b) (i)	3M 5W = 35 4M 4W = 175	B1 B1	
		$5M \ 3W = 210$	B1	
		Total = 420	B1	B1 for addition to obtain final answer, must be evaluated.
		or $^{12}C_8 - 6M \ 2W - 7M \ 1W$		or : as above, final B1 for subtraction to get final answer
		495 - 70 - 5 = 420		get illiai aliswei
	(ii)	Oldest man in, oldest woman out and vice-versa		
		$^{10}C_7 \times 2 = 240$	B1, B1	B1 for ${}^{10}C_7$, B1 for realising there are 2 identical cases
		Alternative:		identical cases
		1 man out 1 woman in 6 men 4 women		
		6M 1W: ${}^{6}C_{6} \times {}^{4}C_{1} = 4$		
		$5M 2W: {}^{6}C_{5} \times {}^{4}C_{2} = 36$		
		$4M \ 3W : {}^{6}C_{4} \times {}^{4}C_{3} = 60$		
		$3M 4W: {}^{6}C_{3} \times {}^{4}C_{4} = 20$ $Total = 120$	B1	All separate cases correct for B1
		10tal - 120		
		There are 2 identical cases to consider, so 240 ways in all.	B1	B1 for realising there are 2 identical cases, which have integer values

Page 7	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – May/June 2014	4037	11

$5\sin 2x + 3\cos 2x = 0$ $\tan 2x = -0.6$ $2x = 149^{\circ}, 329^{\circ}$	M1 DM1	In each case the last A mark is for a second correct solution and no extra solutions within the range M1 for use of tan DM1 for dealing with 2x correctly
$x = /4.5^{\circ}, 164.5^{\circ}$	711,711	AT 101 Cacii
Alternatives: $\sin(2x + 31^\circ) = 0 \text{ or } \cos(2x - 59^\circ) = 0$	M1	M1 for either, then mark as above
$2\cot^2 v + 3\csc v = 0$		
$2(\csc^2 y - 1) + 3 \csc y = 0$	M1	M1 for use of correct identity
$2\cos ec^2y + 3\cos ecy - 2 = 0$		
$(2\cos \operatorname{ecy} - 1)(\cos \operatorname{ecy} + 2) = 0$	M1	M1 for attempt to factorise a 3 term quadratic equation
One valid solution		
$\cos \operatorname{ecy} = -2$, $\sin y = -\frac{1}{2}$		
y = 210°, 330°	A1,A1	A1 for each
Alternative:		
$2\frac{\cos^2 y}{\sin^2 y} + \frac{3}{\sin y} = 0$	M1	M1 for use of $\cot y = \frac{\cos y}{\sin y}$ and
leads to $2\sin^2 y - 3\sin y - 2 = 0$		$\cos \operatorname{ecy} = \frac{1}{\sin y}$
and $\sin y = -\frac{1}{2}$ only	M1	M1 for attempt to factorise a 3 term quadratic equation
y = 210°, 330°	A1A1	
$3\cos(z+1.2)=2$		
$\cos(z+1.2) = \frac{2}{3}$		
(z+1.2) = 0.8411, 5.442, 7.124	M1	M1 for correct order of operations to end up with 0.8411 radians or better
z = 4.24, 5.92	A1 A1A1	A1 for each valid solution
	$\tan 2x = -0.6$ $2x = 149^{\circ}, 329^{\circ}$ $x = 74.5^{\circ}, 164.5^{\circ}$ Alternatives: $\sin(2x + 31^{\circ}) = 0 \text{ or } \cos(2x - 59^{\circ}) = 0$ $2\cot^{2}y + 3\csc y = 0$ $2(\csc^{2}y - 1) + 3\csc y = 0$ $2\csc^{2}y + 3\csc y - 2 = 0$ $(2\csc y - 1)(\csc y + 2) = 0$ One valid solution $\cos \exp y = -2, \sin y = -\frac{1}{2}$ $y = 210^{\circ}, 330^{\circ}$ Alternative: $2\frac{\cos^{2}y}{\sin^{2}y} + \frac{3}{\sin y} = 0$ $ \cos y = -\frac{1}{2} \text{ only}$ $y = 210^{\circ}, 330^{\circ}$ $3\cos(z + 1.2) = 2$ $\cos(z + 1.2) = 2$ $\cos(z + 1.2) = \frac{2}{3}$ $(z + 1.2) = 0.8411, 5.442, 7.124$	tan2 $x = -0.6$ $2x = 149^{\circ}, 329^{\circ}$ $x = 74.5^{\circ}, 164.5^{\circ}$ Alternatives: $\sin(2x + 31^{\circ}) = 0$ or $\cos(2x - 59^{\circ}) = 0$ M1 $2\cot^{2}y + 3\csc y = 0$ $2(\csc^{2}y - 1) + 3\csc y = 0$ $2\cos c^{2}y + 3\cos cy - 2 = 0$ (2 $\csc^{2}y + 3\cos cy - 2 = 0$ M1 One valid solution $\cos cy = -2, \sin y = -\frac{1}{2}$ $y = 210^{\circ}, 330^{\circ}$ Alternative: $2\frac{\cos^{2}y}{\sin^{2}y} + \frac{3}{\sin y} = 0$ leads to $2\sin^{2}y - 3\sin y - 2 = 0$ and $\sin y = -\frac{1}{2}$ only $y = 210^{\circ}, 330^{\circ}$ A1A1 $y = 210^{\circ}, 330^{\circ}$ A1A1 $3\cos(z + 1.2) = 2$ $\cos(z + 1.2) = 2$ $\cos(z + 1.2) = \frac{2}{3}$ ($z + 1.2$) = 0.8411, 5.442, 7.124 $z = 4.24, 5.92$ A1