|--| ## UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level | CANDIDATE
NAME | | | | | |-------------------|--|-----------------|--|--| | CENTRE
NUMBER | | CANDII
NUMBE | | | **COMBINED SCIENCE** 5129/02 Paper 2 May/June 2010 2 hours 15 minutes Candidates answer on the Question Paper. No Additional Materials are required. ## READ THESE INSTRUCTIONS FIRST Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use a soft pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. DO NOT WRITE IN ANY BARCODES. Answer all questions. A copy of the Periodic Table is printed on page 24. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. | For Examiner's Use | |--------------------| | | | | | | | | | | | | | | This document consists of 23 printed pages and 1 blank page. **1** A series circuit is shown in Fig. 1.1. The resistors have values of 3Ω and 6Ω . For Examiner's Use Fig. 1.1 - (a) On Fig. 1.1, draw the symbol for a voltmeter connected to measure the potential difference across the 6Ω resistor. [2] - (b) The ammeter reading is 0.20 A. Calculate (i) the potential difference across the 6Ω resistor, (ii) the combined resistance of the two resistors. resistance = $$\Omega$$ [1] 2 | Aluminium, chlorine, magnesium and silicon are in the same period of the Periodic Table. | | | | |--|-----|---|-------------------| | | (a) | Which two of these elements conduct electricity? Give a reason for your choice. | Examiner's
Use | | | | elements | | | | | reason | | | | | [2] | | | | (b) | The oxides of magnesium and phosphorus are added to water and Universal Indicator paper is dipped into each solution. | | | | | State the colour of the indicator with each of the solutions. | | | | | magnesium oxide solution | | | | | phosphorus oxide solution[2] | | | | (c) | Strontium is in the same group of the Periodic Table as magnesium. | | | | | Explain why strontium and magnesium have similar chemical reactions. | | | | | | | | | | [1] | | 3 Measurements were made of the diameter of the pupil of a person's right eye over a period of five minutes in a darkened room. For Examiner's Use During this time, a light of varying intensity was shone into the person's right eye. The results are shown in Fig. 3.1. Fig. 3.1 (a) Use Fig. 3.1 to answer the following questions. (i) When is the pupil most dilated? | from | mins to mins | [1] | |------|--------------|-----| (ii) When is the intensity of the light entering the eye at its greatest? from mins to mins [1] (iii) Suggest when the light intensity decreases most rapidly. from mins to mins [1] (b) Name the structure in the human eye which brings about changes in pupil size.[1] (c) During this experiment, the left eye stays in the dark. On Fig. 3.1, draw a line to show the diameter of the pupil of the **left** eye. [1] (d) In the pupil reflex, where are the receptors?[1] For Examiner's Use 4 | A nucleus of cobalt emits a beta-particle to form a nickel nucleus. | | | | | |--|--|--|--|--| | The equation for the nuclear decay is ${}^{60}_{\chi}\text{Co} \rightarrow {}^{60}_{28}\text{Ni} + {}^{0}_{-1}\beta$. | | | | | | (a) Calculate the value of x. | | | | | | x =[1] | | | | | | (b) State the nature of a beta-particle. | | | | | | [1] | | | | | | (c) Determine the number of neutrons in a nucleus of nickel-60 ($^{60}_{28}$ Ni). | | | | | | number of neutrons =[1] | | | | | | (d) A nucleus of carbon ${}^{14}_{6}$ C emits a beta-particle. | | | | | | The half-life of $^{14}_{\ 6}$ C is 5700 years. | | | | | | Initially, a sample of wood contains 1 000 000 atoms of $^{14}_{\ 6}$ C. | | | | | | How long does it take for the number of ${}^{14}_{6}\text{C}$ atoms in the sample to decrease to 250 000? | 5 | Use | words from the list to co | mplete the sente | ences below. | | | For | |--------|---------------------------|--------------------|-----------------|--------------------|-----------------|-------------------| | | amino-acids | bladder | fat | kidneys | liver | Examiner's
Use | | Each | word may be used onc | e, more than one | ce, or not at a | all. | | | | Urea | is produced in the body | by the | | , during t | he breakdown of | | | | | | | | | | | The | urea is excreted by the . | | | | | | | If the | ere is too much glucose i | in the blood, the | extra glucos | e is removed by th | ne | | | | | ., and stored in t | the cells as i | nsoluble carbohyd | Irate.
[4 |] | For Examiner's Use 6 | Ammonium nitrate is made by adding ammonia solution to nitric acid. | | | | |---|-------------------------------------|--|--| | The equation for the reaction is | | | | | NH ₃ + HNO ₃ - | → NH ₄ NO ₃ | | | | (a) State the type of reaction that occurs bet | ween ammonia and nitric acid. | | | | | [1] | | | | (b) Calculate the relative molecular mass of | | | | | ammonia, | | | | | ammonium nitrate | [2] | | | | [A _r : N, 14; H, 1; O, 16.] | | | | | (c) Calculate the mass of ammonia required | to make 2.0 kg of ammonium nitrate. | mass = kg [2] | | | For Examiner's Use 7 Two similar metal cans **A** and **B** are shown in Fig. 7.1. Fig. 7.1 Can ${\bf A}$ has a shiny white surface. Can ${\bf B}$ has a matt black surface. Both cans contain equal masses of hot water. Initially, the cans and water are all at the same temperature. | (a) | Explain why the temperature of the water in can B falls more quickly than the water in can A . | |-----|--| | | | | | [1] | | (b) | State the process by which heat is transferred through the metal of the cans. | | | [1] | | (c) | Air around each can is heated and rises. | | | Explain why the air rises. | | | | | | [1] | | 8 | Wat | er for drinking is stored in reservoirs. | For | |---|-----|--|---------| | | (a) | State the two processes used to purify water to make it fit to drink. | Use Use | | | | process 1 | | | | | process 2[2] | | | | (b) | Suggest how these two processes purify water. | **9** A cross-section of part of a leaf, as it appears under the microscope, is shown in Fig. 9.1. For Examiner's Use Fig. 9.1 | (a) | Name the tissues labelled X and Y . | | |-----|--|----| | | X | | | | Y | 2] | | (b) | The leaf contains air spaces. | | | | Which tissue contains the most air spaces? | | | | [| 1] | | (c) | Describe how carbon dioxide enters a leaf during photosynthesis. | | | | | | | | [2 | 2] | | (d) | The leaf is very thin. | | | | Explain how this helps the leaf to make carbohydrates by photosynthesis. | | | | | | | | | | | | [2 | 2] | 10 (a) Complete Fig. 10.1 by inserting 'yes' or 'no' in the blank spaces. For Examiner's Use | material | is the material magnetic? | |-----------|---------------------------| | aluminium | no | | carbon | | | iron | | | plastic | | | steel | | **Fig. 10.1** [2] (b) Using the materials in Fig. 10.1, name the material which is (i) a poor electrical conductor,[1] (ii) used for the core of a transformer.[1] 11 Fig. 11.1 shows a blast furnace for the extraction of iron from iron ore. For Examiner's Use - Fig. 11.1 - (a) Name an ore from which iron is extracted.[1] - **(b)** In the extraction of iron, the iron ore is reduced by carbon monoxide. - (i) Balance the equation for the reduction of iron ore. $$Fe_2O_3 + \dots CO \longrightarrow \dots Fe + \dots CO_2$$ [1] (ii) Explain what is meant by *reduction*. | r | ٠. | - | |---|----|---| | | 1 | L | | | ٠. | 1 | (iii) Describe how carbon monoxide is produced from the coke added to the furnace. (c) Suggest why sodium is not extracted using the same process as iron. [1] **12** Fig. 12.1 shows how the displacement of particles in a wave varies with distance along the wave. For Examiner's Use Fig. 12.1 | (a) | Use Fig. 12.1 to determine for this wave | | |-----|--|--| | | | | | (i) | the wavelength, |
mm | [1] | |------|-----------------|--------|-----| | (ii) | the amplitude. |
mm | [1] | (b) Waves on the surface of water are transverse waves. What is meant by a *transverse* wave? For Examiner's Use | 13 | (a) | Exp | olain the fu | nction of te | eth in the d | ligestion of t | food. | | | | |----|-----|---------|------------------------------|--------------|--------------|---------------------------|--------------|-----------------|---|-----| | | (b) | | es of dent | al decav ar | | | | | eyed. The resu | | | | (-) | | shown in I | | | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | | | | | | etween the
luoride con | | - | n town A and | in | | | | | | 10 - | | | | | | | | | | | | | | | | Key
I | | | | | | | | | | | | 8 year-olds | | | | | | | verage
number of | | | | | 15 year-olds | 3 | | | | | d
te | lecayed
eeth per
child | 5- | | | | | | | | | | | | | town A | | tow | n B | | | | | | | | | | Fig. 13.1 | | | | | | | | (i) | Use the in | | in Fig. 13.1 | to suggest | which towr | n has the high | er water fluori | de | | | | | Explain y | our answer | | | | | | | | | | | town | | | | | | | | | | | | explanati | on | | | | | | | | | | | | | | | | | | [1] | | | | (ii) | Suggest
the two to | | possible re | asons for th | ne differend | ce in rates of | dental decay | in | [2] | 14 Regions of the electromagnetic spectrum are shown in Fig. 14.1. For Examiner's Use | radiowa | aves | microwaves | A | visible light | ultraviolet light | X-rays | gamma-rays | | |---|-----------|----------------|----------------|-----------------------|-------------------|--------|------------|--| | | Fig. 14.1 | | | | | | | | | (a) | Nam | e the region o | f the spectrur | n labelled A . | | | | | | | [1] | | | | | | | | | (b) Which region of the spectrum has the longest wavelength? | | | | | | | | | | [1] | | | | | | | | | | (c) All electromagnetic waves travel at the same speed in a vacuum. | | | | | | | | | | State the magnitude of this speed. | | | | | | | | | | | | | | sp | peed = | | m/s [1] | | For Use **15** Part of the carbon cycle is shown in Fig. 15.1. Fig. 15.1 (a) Use words from the list to complete the three empty boxes in Fig. 15.1. animals bacteria carbon dioxide fossil fuels plants oxygen Each word may be used once, more than once, or not at all. [3] (b) Which processes are represented by the arrows labelled X, Y and Z? | X | | |---|----| | | | | Υ | | | | | | 7 | [3 | ## **16** Fig. 16.1. shows properties of four substances. For Examiner's Use | substance | melting point
°C | boiling point
°C | density
g/cm ³ | |-----------|---------------------|---------------------|------------------------------| | Α | -219 | -183 | 0.0015 | | В | -114 | 78 | 0.79 | | С | 119 | 445 | 1.96 | | D | 1083 | 2582 | 8.94 | Fig. 16.1 Use the letters in Fig. 16.1 to answer the questions below. Each letter may be used once, more than once or not at all. Which substance is most likely to be | (a) | a metal, | [1] | |-----|---------------------------------------|-----| | (b) | a liquid at room temperature, | [1] | | (c) | a covalent solid at room temperature? | [1] | 17 A wooden block is pulled across a horizontal table at a constant speed of 0.20 m/s as shown in Fig. 17.1. For Examiner's Use Fig. 17.1 The block is pulled a distance of 0.80 m by the horizontal force of 4.0 N. (a) Calculate the time taken for the block to move 0.80 m. **(b)** Calculate the work done by the force of 4.0 N to move the block through 0.80 m. © UCLES 2010 18 Fig. 18.1 shows methane burning using a Bunsen burner with the air hole open. For Examiner's Use | | Fig. 18.1 | |-----|--| | (a) | Methane burns completely when the air hole is open. | | | State the two products when methane burns completely. | | | and [2] | | (b) | Methane burns incompletely when the air hole is closed. | | | Explain why it is dangerous to use a Bunsen burner in a poorly ventilated room with the air hole closed. | | | | | | [2] | | (c) | Organic compounds are grouped into families called homologous series. | | | Describe the characteristics of a homologous series. | | | | | | | | | [2] | | | | **19** Fig. 19.1. shows a swinging pendulum in two different positions. At position **A**, the pendulum bob changes the direction in which it was moving. For Examiner's Use Fig. 19.1 | | _ | | |-----|--|-------------| | (a) | State the energy change that takes place as the pendulum swings from position B . | A to | | | energy changes to energy. | [2] | | (b) | The period of the pendulum is 2.0 s. | | | | Calculate the shortest time for the pendulum to move from position A to position B . | | | | | | | | time = s | ; [1] | 20 Changes in the thickness of the lining of a woman's uterus during the menstrual cycle are shown in Fig. 20.1. For Examiner's Use Fig. 20.1 | (a) From Fig. 20.1, choose dates who | (a) | (| (a) |) | From | Fig. | 20.1, | choose | dates | whe | |--------------------------------------|-----|---|-----|---|------|------|-------|--------|-------|-----| |--------------------------------------|-----|---|-----|---|------|------|-------|--------|-------|-----| | (| П) | menstruation | 10 | OCCULTUDO | |---|----|---------------------|----|-----------| | • | | , ilibiləti uatioli | ா | occurring | | | | | | | | • • • • • • • • • • • • • • • • • • • | | - | |---------------------------------------|-----|---| | | . 7 | | | | | | | | | | (ii) ovulation is likely to occur. | [,] | [| 1 |] | |-----|---|---|---| |-----|---|---|---| (b) (i) State the average length of a menstrual cycle. | F. / | | |------|----| | 17 | 41 | | 11 | | | | | (ii) Suggest **two** factors that might cause the length of a woman's menstrual cycle to be longer or shorter than the average. | 1 |
 |
 | | |---|------|------|--| | | | | | | | | | 22 | | |----|-----|------|---|--------------------------| | 21 | The | proc | is manufactured from glucose.
cess is carried out in the presence of yeast in an air-free container.
ction produces a solution of ethanol in water. | For
Examiner's
Use | | | (a) | Stat | e the name of the process[1] | | | | (b) | Ехр | lain why | | | | | (i) | yeast is used in this process, | | | | | | [1] | | | | | (ii) | the container should be air-free. | | | | | | [1] | | | | (c) | Wat | er boils at 100°C. Ethanol boils at 78°C. | | | | | _ | gest the name of the method used to separate ethanol from a mixture of ethanol water. | | | | | | [1] | | | | (d) | Drav | w the structure of a molecule of ethanol. | | | | | | | | | | | | | | | | | | [1] | 23 ## **BLANK PAGE** Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. 260 **L** S29 **N** 258 **Md** 257 **Fm** 252 **ES** **5**2 52 247 **BK** 247 **Cm** Curium Am 243 244 **Pu** 237 **Np** 238 231 **Pa** 8 65 Fermium 69 89 DATA SHEET | 004 | | | | | | F | he Perio | dic Tabl | The Periodic Table of the Elements | Elemen | ts | | | | | | | |---------------|---------------------------|-------------------|-----------------|----------------|------------------|------------------|------------------|---------------|------------------------------------|-------------------|---------------|-----------------|-----------------|------------------|-----------------|----------------|----------------| | | | | | | | | | Gr | Group | | | | | | | | | | _ | = | | | | | | | | | | | Ш | <u>\</u> | > | I | VII | 0 | | | | | | | | | - T | | | | | | | | | | 4
He | | | | | | | | | Hydrogen
1 | | | | | | | | | | Helium
2 | | 7 | 6 | | | | | - | | 1 | | | | £ | 12 | 14 | 16 | 19 | 20 | | = | Be | | | | | | | | | | | ш | ပ | z | 0 | ш | Ne | | 3 Lithium | Beryllium
4 | | | | | | | | | | | Boron
5 | Carbon
6 | Nitrogen
7 | Oxygen
8 | Fluorine
9 | Neon
10 | | 23 | 24 | | | | | | | | | | | 27 | 28 | 31 | 32 | 35.5 | 40 | | Na | Mg | | | | | | | | | | | Ν | S | <u>α</u> | S | CI | Ar | | Sodium
11 | Magnesium
12 | | | | | | | | | | | Aluminium
13 | Silicon
14 | Phosphorus
15 | Sulfur
16 | Chlorine
17 | Argon
18 | | 39 | 40 | 45 | 48 | 51 | 52 | 55 | 56 | 29 | 59 | 29 | 65 | 02 | 73 | 75 | 79 | 80 | 84 | | Y | Ca | သင | F | > | ပ် | Mn | Ъе | ပိ | Z | D
C | Zu | Ga | Ge | As | Se | ፙ | ž | | Potassium 19 | 20 | Scandium
21 | Titanium
22 | Vanadium
23 | Chromium
24 | Manganese
25 | Iron
26 | Cobalt
27 | Nickel
28 | Copper
29 | Zinc
30 | Gallium
31 | Germanium
32 | Arsenic
33 | Selenium
34 | Bromine
35 | Krypton
36 | | 85 | | 68 | 91 | 93 | 96 | | 101 | 103 | 106 | 108 | 112 | 115 | 119 | | 128 | 127 | 131 | | 8 | ഗ് | > | Zr | qN | Ø | ည
L | | R | Pd | Ag | ပ | I | Sn | Sb | <u>e</u> | | Xe | | Rubidium 37 | Strontium
38 | Yttrium
39 | Zirconium
40 | Niobium
41 | Molybdenum
42 | Technetium
43 | Ē | Rhodium
45 | Palladium
46 | | Cadmium
48 | Indium
49 | Tin
50 | > | Tellurium
52 | lodine
53 | Xenon
54 | | 133 | 137 | 139 | 178 | 181 | 184 | 186 | 190 | 192 | 195 | 197 | 201 | 204 | 207 | | 509 | 210 | 222 | | S | Ва | Ľ | Ξ | Б | > | Re | Os | Ľ | ₹ | Αn | Hg | 11 | Ър | Ξ | S. | Αt | R | | Caesium
55 | Barium
56 | Lanthanum
57 * | Hafnium
72 | Tantalum
73 | Tungsten
74 | Rhenium
75 | Osmium
76 | Iridium
77 | Platinum
78 | Gold
79 | Mercury
80 | Thallium
81 | Lead
82 | Bismuth
83 | Polonium
84 | Astatine
85 | Radon
86 | | 223 | 226 | 227 | | | | | | | | | | | | | | | | | L anione | E | Actinium | | | | | | | | | | | | | | | | | 87 | 88 | 89 + | | | | | | | | | | | | | | | | | * 58–71 | * 58–71 Lanthanoid series | id series | | 140 | 141 | 144 | 147 | 150 | 152 | 157 | 159 | 162 | 165 | 167 | 169 | 173 | 175 | | + 90-10 | + 90-103 Actinoid series | ceries | | ပီ | ቯ | P | Pm | Sm | Ш | <u>გ</u> | Q
L | Dy | 운 | ш | Ę | Υb | ב | | 2 | איטווויטר ט | 201100 | | Cerium
58 | Praseodymium | Neodymium | Promethium
61 | Samarium | Europium
63 | Gadolinium
6.4 | Terbium | Dysprosium | Holmium
67 | Erbium
68 | Thulium | Ytterbium | Lutetium
71 | 150 **Sm** Samarium Promethium 147 **Pm** ± **₽** Praseodymium 59 ¹ 4 140 **Ce**rium 28 * 58-71 Lanthanoid series † 90-103 Actinoid series 232 **7** Thorium a = relative atomic mass X = atomic symbol в **×** b = atomic (proton) number Key The volume of one mole of any gas is 24dm3 at room temperature and pressure (r.t.p.).