

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY 0620/32

Paper 3 (Extended)

October/November 2009

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part questions.

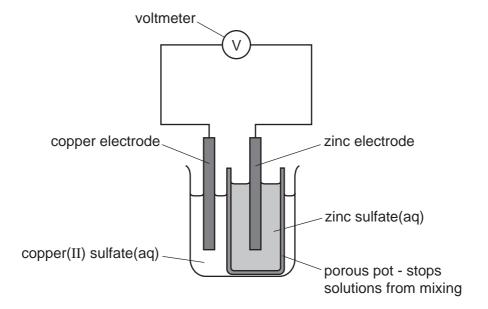
For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
Total	

This document consists of 14 printed pages and 2 blank pages.

(a)	The	e major gases in unpolluted air are 79% nitrogen and 20% oxygen. Name another gaseous element in unpolluted air.
	(i)	Name another gaseous element in unpolluted air.
		[1]
	(ii)	Name two compounds in unpolluted air.
		[2]
(b)	Two	common pollutants in air are sulfur dioxide and the oxides of nitrogen.
	(i)	Name another pollutant in air.
		[1]
	(ii)	Describe how sulfur dioxide is formed.
		[2]
	(iii)	How are the oxides of nitrogen formed?
		[2]
(0)	Цол	
(C)	ПО	v is oxygen obtained from air?
		[2]
		[Total: 10]

[6]

(a) Complete the table.


type of oxide	pH of solution of oxide	example
acidic		
basic		
neutral		

(b)	(i)	Explain the term amphoteric.
		[1]
	(ii)	How could you distinguish between an acidic oxide and an amphoteric oxide using hydrochloric acid and aqueous sodium hydroxide?
		[2]
		[-1
		[Total: 9]

(a)	An	important ore of zinc is zinc blende, ZnS.	3
	(i)	How is zinc blende changed into zinc oxide?	-
			[1]
	(ii)	Write a balanced equation for the reduction of zinc oxide to zinc by carbon.	
			[2]
(b)		najor use of zinc is galvanizing; steel objects are coated with a thin layer of zinc. s protects the steel from rusting even when the layer of zinc is broken.	
		thin layer steel exposed to of zinc oxygen and water	
		steel	
		Explain, by mentioning ions and electrons, why the exposed steel does not rust.	
			•••
			•••
			•••

[Total: 10]

(c) Zinc electrodes have been used in cells for many years, one of the first was the cell in 1831.

(i)	Give an explanation for the following in terms of atoms and ions.	
	observation at zinc electrode – the electrode becomes smaller	
	explanation	
		[1]
	observation at copper electrode – the electrode becomes bigger	
	explanation	
		[1]
(ii)	When a current flows, charged particles move around the circuit.	
	What type of particle moves through the electrolytes?	
		[1]
	Which particle moves through the wires and the voltmeter?	
		[1]

The distinctive smell of the seaside was thought to be caused by ozone, O₃. Ozone is a form of the element oxygen.

(a) A mixture of oxygen and ozone is formed by passing electric sparks through oxygen.

$$3O_2 \rightleftharpoons 2O_3$$

Suggest a technique that might separate this mixture. Explain why this method separates the two forms of oxygen.

technique	
explanation	
	••
	 ••
	[2

(b) Ozone is an oxidant. It can oxidise an iodide to iodine.

$$2I^- + O_3 + 2H^+ \rightarrow I_2 + O_2 + H_2O$$

- What would you see when ozone is bubbled through aqueous acidified potassium (i) iodide?
- (ii) Explain in terms of electron transfer why the change from iodide ions to iodine molecules is oxidation.

(iii) Explain, using your answer to **b(ii)**, why ozone is the oxidant in this reaction.

(c)	It is now	known	that	the	smell	of	the	seaside	is	due	to	the	chemical	dimethy
	$(CH_3)_2S$.													

(i) Draw a diagram that shows the arrangement of the valency electrons in one molecule of this covalent compound.

Use x to represent an electron from a carbon atom.

Use o to represent an electron from a hydrogen atom.

Use • to represent an electron from a sulfur atom.

[3]	Name the three compounds formed when dimethyl sulfide is burnt in excess oxygen.	(ii)
•••••		
[2]		
 l: 11]	[Total:	

5 The first three elements in Group IV are carbon, silicon and germanium. The elements and their compounds have similar properties.

that of are used in

(a) The compound, silicon carbide, has a macromolecular structure similar to that of diamond.

i)	A major use of silicon carbide is to reinforce aluminium alloys which are used in the construction of spacecraft. Suggest three of its physical properties.
	[3]
i)	Draw a diagram to show the arrangement of silicon atoms around one carbon

(ii atom in silicon carbide. Label this diagram 1.

Draw a diagram to show the arrangement of carbon atoms around one silicon atom in silicon carbide. Label this diagram 2.

[3]

(b) Germanium(IV) oxide, GeO₂, has the same macromolecular structure as silicon(IV) oxide. Draw the structural formula of germanium(IV) oxide.

(c) Germanium forms a series of hydrides comparable to the alkanes.

(i) Draw the structural formula of the hydride which contains three germanium atom per molecule.

(ii)	Predict the products of the complete combustion of this hydride.	[1]
		[2]
	[Total:	11]

6 (a) Sulfuric acid is made by the Contact process.

$$2SO_2 + O_2 \rightleftharpoons 2SO_3$$

This is carried out in the presence of a catalyst at $450\,^{\circ}\text{C}$ and 2 atmospheres pressure.

(i)	Sulfur dioxide is made by burning sulfur. Name a source of sulfur.	
		 [1]
(ii)	Give another use of sulfur dioxide.	
		[1]
(iii)	Name the catalyst used.	
		[1]
(iv)	If the temperature is decreased to 300° C, the yield of sulfur trioxide increases. Explain why this lower temperature is not used.	
		[1]
(v)	Sulfur trioxide is dissolved in concentrated sulfuric acid. This is added to water to make more sulfuric acid. Why is sulfur trioxide not added directly to water?	0
		[4]

(b) Sulfuric acid was first made in the Middle East by heating the mineral, green vitric FeSO₄.7H₂O. The gases formed were cooled.

 $\begin{array}{ccccc} FeSO_4.7H_2O(s) & \rightarrow & FeSO_4(s) & + & 7H_2O(g) \\ green \ crystals & \ yellow \ powder \end{array}$

$$2 FeSO_4(s) \quad \rightarrow \quad Fe2O_3(s) \quad + \quad SO_2(g) \ + \ SO_3(g)$$

On cooling

$$SO_3$$
 + H_2O \rightarrow H_2SO_4 sulfuric acid SO_2 + H_2O \rightarrow H_2SO_3 sulfurous acid

1	ï۱	How could	vou show	that the	firet	reaction	ic	reversible?
١	."	HOW Could	you snow	mai me	IIISt	reaction	15	reversible

		[2]

(ii) Sulfurous acid is a reductant. What would you see when acidified potassium manganate(VII) is added to a solution containing this acid?

[2]

(iii) Suggest an explanation why sulfurous acid in contact with air changes into sulfuric acid.

Γ1	11
 •	-

(c) 12.16 g of anhydrous iron(II) sulfate was heated. Calculate the mass of iron(III) oxide formed and the volume of gases, at r.t.p., formed.

$$2FeSO_4(s) \rightarrow Fe_2O_3(s) + SO_2(g) + SO_3(g)$$

mass of one mole of $FeSO_4 = 152 g$

number of moles of FeSO₄ used =

number of moles of Fe_2O_3 formed =

mass of one mole of Fe_2O_3 = g

mass of iron(III) oxide formed = _____g

total number of moles of gases formed = _____

total volume of gases formed = ____dm³

[6]

[Total: 16]

[2]

7	Butan-1-ol is used as a solvent for paints and varnishes, to make esters and as a fuel
	Butan-1-ol can be manufactured from but-1-ene, which is made from petroleum.

		rananara ar
	The state of the s	apapers.co
	12	
	ol is used as a solvent for paints and varnishes, to make esters and as a fuel- ol can be manufactured from but-1-ene, which is made from petroleum.	For iner's
	nol is a fuel of the future. It can be made by the fermentation of almost any form of a grain, straw, leaves etc.	For hiner's
(a) But-	-1-ene can be obtained from alkanes such as nonane, C ₉ H ₂₀ , by cracking.	
(i)	Give the reaction conditions.	
		[2]
(ii)	Complete an equation for the cracking of nonane, C_9H_{20} , to give but-1-ene.	
	$C_9H_{20} \rightarrow$	[2]
(iii)	Name the reagent that reacts with but-1-ene to form butan-1-ol.	
		[1]
(b) (i)	Balance the equation for the complete combustion of butan-1-ol.	
	$C_4H_9OH + \dots O_2 \rightarrow \dots CO_2 + \dots H_2O$	[2]
(ii)	Write a word equation for the preparation of the ester butyl propanoate.	

(c)	The biol	e fermentation of biomass by bacteria produces a mixture of products which in outanol, propanol, hydrogen and propanoic acid.
	(i)	Draw the structural formula of propanol and of propanoic acid. Show all the bonds.
		propanol
		propanoic acid
	(ii)	[2] Why is it important to develop these fuels, such as biobutanol, as alternatives to
	(11)	petroleum?
		[1]
(d)		v could you show that butanol made from petroleum and biobutanol are the same mical?
		[4]
		[1]
		[Total: 13]

BLANK PAGE

Www.xtrapapers.com

BLANK PAGE

DATA SHEET	The Periodic Table of the Elements
------------	------------------------------------

									1	₩ WW	xtrapapers.com
					1	6					Data
	0	4 Heium	20 Ne Neon	40 Ar Argon	84 Kr Krypton 36	131 Xe Xenon 54	Radon 86		175 Lu Lutetium 71	Lr Lawrencium 103	Astrapapers.com
	II/		19 Fluorine	35.5 C1 Chlorine	80 Br Bromine	127 I lodine 53	At Astatine 85		173 Yb Ytterbium 70	No Nobelium 102	de con
	N		16 Oxygen	32 S Sulfur	Selenium 34	128 Te Tellurium 52	Po Polonium 84		169 Tm Thulium 69	≥ €	13
	>		14 N Nitrogen 7	31 Phosphorus	75 AS Arsenic	122 Sb Antimony 51	209 Bi Bismuth		167 Er Erbium 68	Fm Fermium	
	N		12 C Carbon 6	28 Si Silicon	73 Ge Germanium 32	119 Sn Tin	207 Pb Lead		165 Ho Holmium 67	Es Einsteinium 99	(r.t.p.).
	Ш		11 Boron 5	27 A1 Auminium 13	70 Ga Gallium	115 In Indium 49	204 T 1 Thallium		162 Dy Dysprosium 66	Cf Californium 98	The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).
		•			65 Zn Zinc 30	112 Cd Cadmium 48	201 Hg Mercury 80		159 Tb Terbium 65	BK Berkelium 97	ture and
					64 Copper 29	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium 64	Cm Curium	ı tempera
Group					59 Nickell 28	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Am Americium 95	1 ³ at room
Gro					59 Coo Cobalt	103 Rh Rhodium 45	192 Ir Iridium		Sm Samarium 62	Pu Plutonium	s is 24 dn
		1 Hydrogen			56 Iron 26	Ru Ruthenium 44	190 OS Osmium 76		Pm Promethium 61	Neptunium	of any ga
					Mn Manganese 25	Tc Technetium 43	186 Re Rhenium 75		Neodymium 60	238 U Uranium 92	one mole
					Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		Pr Praseodymium 59	Pa Protactinium 91	olume of c
					51 V Vanadium 23	93 Nb Niobium 41	181 Ta Tantalum		140 Ce Cerium	232 Th Thorium	The vc
					48 Ti Titanium 22	2r Zrconium 40	178 Hf Hafnium 72			nic mass ool iic) number	
					Scandium 21	89 × Yttrium 39	139 La Lanthanum *	227 AC Actinium 89	series eries	a = relative atomic massX = atomic symbolb = proton (atomic) number	
	=		Be Beryllium	24 Mg Magnesium	40 Ca Calcium 20	Sr Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series 190-103 Actinoid series	а Х	
	_		7 Li Lithium 3	23 Na Sodium	39 Potassium	85 Rb Rubidium 37	133 Cs Caesium 55	Fr Francium 87	*58-71 Lε 190-103 ≠	Key	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.