

CANDIDATE NAME

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

*	
0	
2	
∞	
6	
0	
5	
2	
∞	
7	
	=

Paper 2 May/June 2013

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page. Write in dark blue or black pen.

You may need to use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

A copy of the Periodic Table is printed on page 16.

You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 15 printed pages and 1 blank page.

	В	С		D	E	
•		\bigcirc				•
		oout these	structures.	Each struc	cture may be used	d one
ich structure	:					
is in Period	4 of the Period	dic Table,				
is a noble g	jas,					
is in Group	II of the Period	dic Table,				
has five ele	ectrons in its ou	ıter shell,				
has a proto	n (atomic) nun	nber of 7,				
represents	a fluorine aton	า?				
mplete the fo	ollowing senter	nces about	elements ι	ısing words	from the list below	V.
	alkali	atom	covalent	ion		
	monatomic	three	transitio	on two		
	an once or r ich structure is in Period is a noble of is in Group has five ele has a proto represents	the following questions at an once or not at all. ich structure is in Period 4 of the Period is a noble gas, is in Group II of the Period has five electrons in its outhas a proton (atomic) numerepresents a fluorine atom mplete the following senter alkali	the following questions about these an once or not at all. ich structure is in Period 4 of the Periodic Table, is a noble gas, is in Group II of the Periodic Table, has five electrons in its outer shell, has a proton (atomic) number of 7, represents a fluorine atom? mplete the following sentences about alkali atom	the following questions about these structures: an once or not at all. ich structure is in Period 4 of the Periodic Table, is a noble gas, is in Group II of the Periodic Table, has five electrons in its outer shell, has a proton (atomic) number of 7, represents a fluorine atom? mplete the following sentences about elements use alkali atom covalent	the following questions about these structures. Each structure an once or not at all. ich structure is in Period 4 of the Periodic Table, is a noble gas, is in Group II of the Periodic Table, has five electrons in its outer shell, has a proton (atomic) number of 7, represents a fluorine atom? mplete the following sentences about elements using words alkali atom covalent ion	the following questions about these structures. Each structure may be used an once or not at all. ich structure is in Period 4 of the Periodic Table, is a noble gas, is in Group II of the Periodic Table, has five electrons in its outer shell, has a proton (atomic) number of 7, represents a fluorine atom? mplete the following sentences about elements using words from the list below alkali atom covalent ion

Elements such as iron and copper, which form coloured compounds, are called

[Total: 10]

[4]

..... elements.

www.xtrapapers.com
For miner's
coint/°C
42
83

2 The table below shows some properties of the Group I elements.

metal	density in g/cm ³	melting point/°C	boiling point/°C
lithium	0.53	181	1342
sodium	0.97	98	883
potassium	0.86	63	
rubidium	1.53	39	686
caesium	1.88	29	669

(a)		e the information in the table to explain why caesium is a liquid when the temperate 4°C.	ure
			[1]
(b)	Sug	ggest a value for the boiling point of potassium.	
		°C	[1]
(c)	(i)	Describe the general trend in density down the group.	
			[1]
	(ii)	Which element does not follow this trend?	
			[1]
(d)	Sta poi	te three physical properties of potassium, other than density, melting point and boil	ing
			[3]
(e)	Pot	assium reacts with water. The products are potassium hydroxide and hydrogen.	
	(i)	Describe two observations when potassium reacts with water.	
			[2]
	(ii)	Complete the symbol equation for this reaction.	
		$2K + \dots H_2O \rightarrow 2KOH + \dots$	[2]

[Turn over

[Total: 11]

(a) Match the name of the homologo. The first one has been done for y	left with its formula on	the right For miner's
halogenoalkane	C ₂ H ₆	Oridge Con
alkane	CH₃COOH	
alkene	C ₂ H ₅ OH	
alcohol	C ₂ H ₅ Cl	
carboxylic acid	C ₂ H ₄	

(b) Draw the full structural formula of the compound, C_2H_6 , showing all atoms and bonds.

[1]

[4]

	of the bonds they contain.
	[2]
(d)	Describe a test to distinguish between a saturated and unsaturated hydrocarbon.
	test
	result with saturated hydrocarbon

result with unsaturated hydrocarbon

Describe the difference between a saturated and an unsaturated hydrocarbon in terms

(c) The compound with the formula C_2H_4 is an unsaturated hydrocarbon.

[Total: 10]

- 4 Farmers spread fertilisers on the soil where crops are to be grown.
 - (a) Why do farmers use fertilisers? In your answer, include
 - the names of the essential elements present in most fertilisers,
 - the reasons why farmers use fertilisers.

[4]

(b) Urea can be used as a fertiliser. The structure of urea is shown below.

(i) Deduce the molecular formula of urea.

.....[1]

(ii) Calculate the relative molecular mass of urea. You must show all your working.

[2]

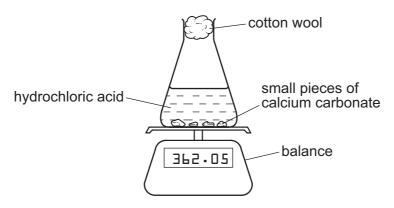
For miner's

(c)	Urea is a solid at room of the molecules in so	temperature. Complete the diagram lid urea.	below to show the arrange of the cannot be a shown the arrange of the cannot be a shown to show the arrange of the cannot be a shown to show the arrange of the cannot be a shown to show the arrange of the cannot be a shown to show the arrange of the cannot be a shown to show the arrange of the cannot be a shown to show the arrange of the cannot be a shown to show the arrange of the cannot be a shown to show the arrange of the cannot be a shown to show the arrange of the cannot be a shown to show the arrange of the cannot be a shown to show the arrange of the cannot be a shown to show the arrange of the cannot be a shown to show
	Show a molecule of u	rea as	
			[2]
(d)	When urea is heated Describe a test for am	with an alkali, ammonia is given off monia.	
	test		
	result		[2]
			[Total: 11]

5 The table shows some properties of four substances, **A**, **B**, **C** and **D**.

ne table shows	s some properties of	7 four substances, A , B	, C and D .	Axtrapapers.com Addition of the control of the con
substance	melting point/°C	does the solid conduct electricity?	does a solution of the solid conduct electricity?	Oridie Con
Α	962	yes	does not dissolve	13
В	747	no	dissolves and conducts	
С	113	no	does not dissolve	
D	3550	no	does not dissolve	

(a)	Which	one	of	these	substances	has
-----	-------	-----	----	-------	------------	-----

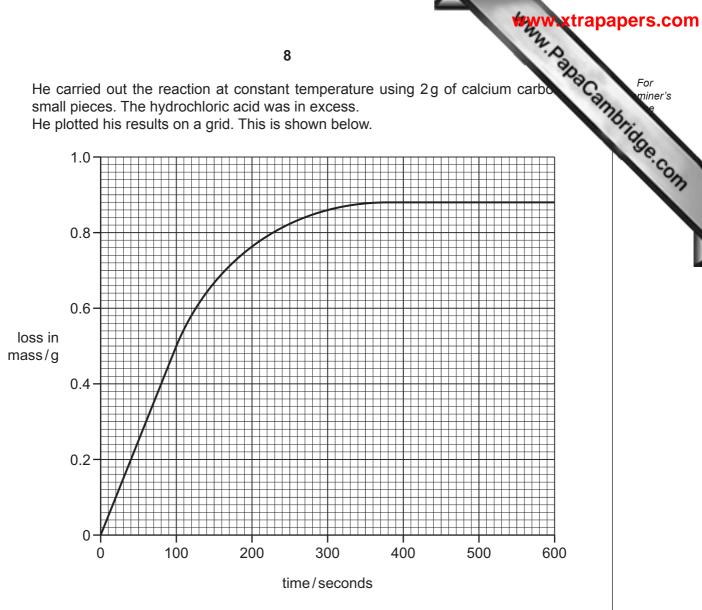

(iii) a metallic structure?

(i)	a giant covalent structure,	
(ii)	a simple molecular structure,	

(b) A student carried out an experiment to determine the rate of reaction of calcium carbonate with excess hydrochloric acid.

$$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + CO_2(g) + H_2O(I)$$

He recorded the loss of mass of the reaction mixture over a period of time.



(i) Explain why the reaction mixture decreases in mass.

[3]

He carried out the reaction at constant temperature using 2g of calcium carbo small pieces. The hydrochloric acid was in excess.

He plotted his results on a grid. This is shown below.

(ii) At what time has the reaction just finished?

.....s [1]

(iii) From the graph, deduce the loss in mass in the first 100 seconds.

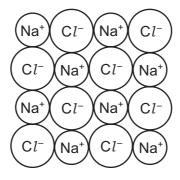
.....g [1]

(iv) The student repeated the experiment keeping everything the same except for the size of the pieces of calcium carbonate. He used smaller pieces of calcium carbonate but the mass used was the same.

On the grid above, draw a line to show how the loss of mass changes with time when smaller pieces of calcium carbonate are used.

(v) State the effect of increasing the concentration of hydrochloric acid on the rate (speed) of this reaction when all other factors remain constant.

[Total: 9]


(a) Propanol is a solvent.

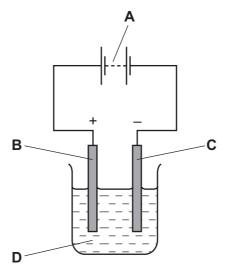
Sugar is soluble in propanol. Salt (sodium chloride) is insoluble in propanol. A student wants to separate a mixture of solid salt and solid sugar.

(i) Describe how she could separate the salt from the sugar. You may draw a labelled diagram to help you answer this question.

	[3]
(ii)	Describe how the student could obtain solid sodium chloride from a solution of sodium chloride in water.
	[1]

(b) The diagram shows the structure of sodium chloride.

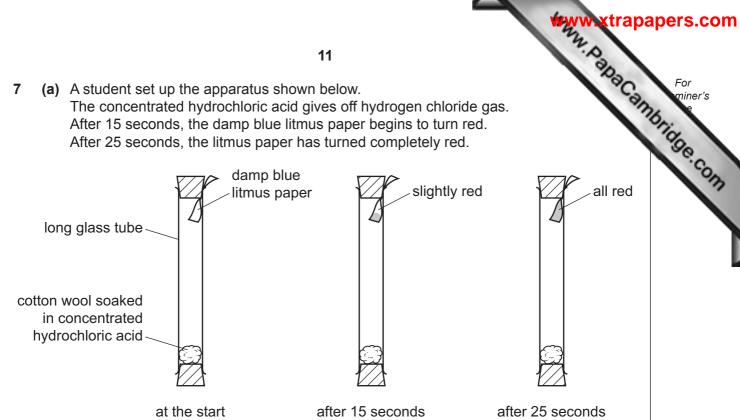
(i) Deduce the simplest formula for sodium chloride.


(ii) What type of bonding is present in sodium chloride? Put a ring around the correct answer.

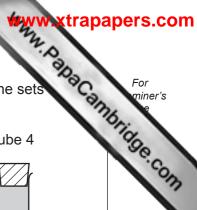
> covalent ionic metallic weak [1]

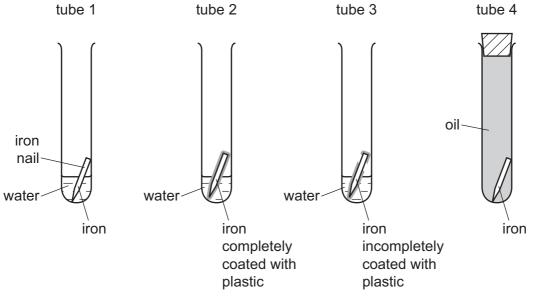
> > [Turn over

(c) The diagram shows the apparatus used to electrolyse a concentrated aqueous of sodium chloride.



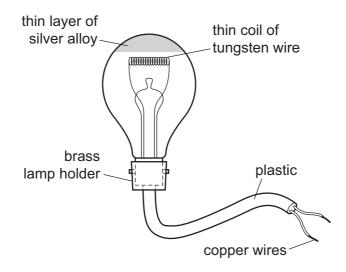
- (i) Which letter on the diagram, A, B, C or D, represents the electrolyte?
- (ii) Name the product formed at the positive electrode, the negative electrode. [2]


[Total: 9]


7 (a) A student set up the apparatus shown below. The concentrated hydrochloric acid gives off hydrogen chloride gas. After 15 seconds, the damp blue litmus paper begins to turn red. After 25 seconds, the litmus paper has turned completely red.

	Use	e ideas about moving particles to explain these observations.	
			[4]
(b)		drogen chloride reacts with ammonia to form a salt which has the formula NH_4Cl . te the name of this salt.	
			[1]
(c)	(i)	Hydrochloric acid reacts with iron to form iron(II) chloride and hydrogen. Write a word equation for this reaction.	
			[1]
	(ii)	Describe a test for iron(II) ions.	
		test	
		result	[2]

(d) A student investigates various methods of protecting iron from rusting. She sets tubes as shown in the diagram below.



(1)	rube i contains unprotected from what is the purpose of this experiment:	
		[1]
(ii)	State the names of the two substances needed for iron to rust.	
	and	[2]
(iii)	Explain why the iron in tube 4 does not rust.	
		[1]
(iv)	Explain why the iron in tube 3 eventually rusts.	
		[1]
	[Tota	al: 13]

For miner's

8 The diagram shows a silvered light bulb.

Some properties of metals used in the light bulb are shown in the table below.

metal	hardness	electrical conductivity	melting point /°C	price /\$ per tonne
brass	hard	good	about 1000	7 000
copper	fairly soft	very good	1083	9 600
silver	fairly soft	very good	962	1 300 000
tungsten	hard	good	3410	450

(a) (i)	Suggest why copper rather than tungsten is used for electrical wiring?
		[1]
(i	i)	Suggest why silver is not used for electrical wiring.
		[1]
(ii	i)	Suggest two reasons why tungsten rather than copper is used to make the bulb filament.
		reason 1
		reason 2[2]
(iv	')	Explain why the copper wires are covered with plastic.
		101

(b) Brass is an alloy.

Which one of the following diagrams, A, B, C or D, best represents an alloy?

14

A B C D

[Total: 7]

BLANK PAGE

36

131 **Xe**

Radon

84 **A** Krypton

40 **Ar**

4 Helium

0

20 Neon

		about
175 Lu Lutetium 71	Lr n Lawrendum 103	anaCan.
Yb Ytterbium 70	No Nobelium 102	
169 Tm Thulium 69	Md Mendelevium 101	
167 Er Erbium 68	Fm Fermium 100	
165 Ho Holmium 67	ES Einsteinium 99	(r.t.p.).
Dy Dysprosium 66	Cf Californium 98	pressure
159 Tb Terbium 65	Bk Berkelium 97	ıture and
157 Gd Gadolinium 64	Cm Curium	ı tempera
152 Eu Europium 63	Am Americium 95	mole of any gas is 24 dm 3 at room temperature and pressure (r.t.p.).
Samarium 62	Pu Plutonium 94	s is 24 dn
Pm Promethium 61	Np Neptunium 93	of any ga:
Neodymium 60	238 U Uranium 92	ne mole o
141 Pr Praseodymium 59	Pa Protactinium 91	The volume of one
Cerium	232 Th Thorium	The vo

trapapers.com

The Periodic Table of the Elements **DATA SHEET**

	IIΛ		61	ш	Fluorine 9	35.5	Cl	Chlorine 17	80	ā	Bromine 35	127	н	lodine 53		Αţ	Astatine 85			173 Yb	Ytterbium 70		Nobelium	102
	IN		16	0	Oxygen 8	32			62	Se	Selenium 34	128	<u>P</u>	Tellurium 52			_			169 T	Thulium 69		Md Mendelevium	101
	>		41	z	Nitrogen 7	31	۵	Phosphorus 15	75	As	Arsenic 33	122	Sb	Antimony 51	209	Ξ	Bismuth 83			167 Er	Erbium 68		Fm Fermium	100
Group	<u>/\</u>		12	ပ	Carbon 6	28	S	Silicon 14	73	Ge	Germanium 32	119	Sn		207	Pb	Lead 82			165 H	Holmium 67		Einsteinium	66
	III		11	Ω	Boron 5	27	Ν	Aluminium 13	02	Ga	Gallium 31	115	In	Indium 49	204	11	Thallium 81			162 Dv	Dysprosium 66		Californium	86
										Zn	Zinc 30	112	င်	Cadmium 48	201	Hg	Mercury 80			159 Tb	Terbium 65		BK Berkelium	26
									64	Cn	Copper 29	108	Ag	Silver 47	197	Ρn	Gold 79			157 Gd	Gadolinium 64		Curium	96
dno									59	Z	Nickel 28	106	Pd	Palladium 46	195	Ŧ	Platinum 78			152 Eu	Europium 63		Americium	95
Gre									59	ဝိ	Cobalt 27	103	R	Rhodium 45	192	Ä	Iridium 77			150 Sm	Samarium 62		Pu	94
		T Hydrogen							26	Fe	Iron 26	101	Ru	Ruthenium 44	190	SO	Osmium 76			Pa	Promethium 61		Neptunium	93
									55	M	Manganese 25			Technetium 43	186	Re	Rhenium 75			144 D	Ē	238	Uranium	
									52	ပ်	Chromium 24	96		Molybdenum 42	184	≥	Tungsten 74			141 D	in		Pa Protactinium	91
									51	>	Vanadium 23	93	Q N	Niobium 41	181		Tantalum 73			140 Ce	_	232	Th	06
									48	F	Titanium 22	91	Zr	Zirconium 40	178	Ξ	Hafnium 72					ic mass	- -	ic) number
									45	Sc	Scandium 21	88	>	Yttrium 39	139	Гa	Lanthanum 57 *	227	Actinium +	series	sries	a = relative atomic mass	X = atomic symbol	b = proton (atomic) number
	=		o	Be	Beryllium 4	24	Mg	Magnesium 12	40	ça	Calcium 20	88	Š	Strontium 38	137	Ba		226	Radium 88	*58-71 Lanthanoid series	ctinoid se		× .	Ω
	_		7	=	Lithium 3	23	Na	Sodium 11	39	¥	Potassium 19	85	Rb	Rubidium 37	133	Cs	Caesium 55	ŭ	Francium 87	*58-71 La	190-103 Actinoid series		Key	۵

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.