

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME																																																																									
CENTRE NUMBER																																																																									

CHEMISTRY

0620/22

Paper 2

October/November 2014

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

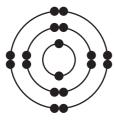
Electronic calculators may be used.

A copy of the Periodic Table is printed on page 20.

You may lose marks if you do not show your working or if you do not use appropriate units.

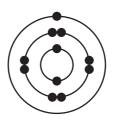
At the end of the examination, fasten all your work securely together.

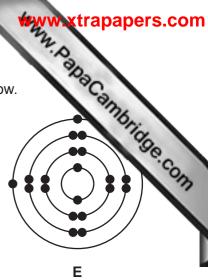
The number of marks is given in brackets [] at the end of each question or part question.


The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

This document consists of 17 printed pages and 3 blank pages.

(a) The electronic structure of five atoms, A, B, C, D and E, are shown below.




В

C

D

Answer the following questions about these structures. Each structure can be used once, more than once or not at all.

Which structure:

	(i)	represents a	an atom of	an element in G	Group V of the I	Periodic Tab	ole,	[1]
	(ii)	has a compl	ete outer s	shell of electrons	3,			[1]
((iii)	represents a	an oxygen	atom,				[1]
((iv)	has a protor	number o	of 20,				[1]
	(v)	is an atom o	f an eleme	ent in Period 4 o	f the Periodic	Table,		[1]
((vi)	has a single	valency e	lectron?				[1]
(b)	Cor	mplete the fol	lowing ser	ntences about is				
	Isot	opes are		of the same	element with the	he same nu	mber of	
	but	different num	nbers of					[3]

[Total: 9]

2 The table below shows some nutritional information on a bottle of apple juice.

contents	mass present in g / 100 cm ³
protein	0.10
sugars	10.40
unsaturated fat	0.10
saturated fat	0.06
chloride ions, Cl-	0.04
magnesium ions, Mg ²⁺	0.01
nitrate ions, NO ₃ -	0.01
potassium ions, K ⁺	0.02
sodium ions, Na ⁺	0.05
X , SO ₄ ²⁻	0.01

(a)	Answer these of	uestions using	information	from the table.

(i)	Which negatively charged ion is present in the highest concentration?	
		[1]
(ii)	State the name of the ion, \mathbf{X} , whose formula is SO_4^{2-} .	
		[1]
(iii)	The formulae for some chlorides are shown below.	
	aluminium chloride, $AlCl_3$ calcium chloride, $CaCl_2$ lead(IV) chloride, $PbCl_4$ potassium chloride, KCl	
	Deduce the formula for magnesium chloride.	
		[1]
(iv)	Calculate the mass of sugars in 250 cm³ of this apple juice.	

.....g [1]

(b)	The fats in the apple juice are both saturated and unsaturated.
	Describe a test to distinguish between saturated and unsaturated compounds

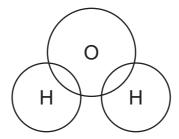
test	The state of the s
result with saturated compound	
result with unsaturated compound	
	[3]

- (c) Apple juice is slightly acidic.
 - (i) Which **one** of the following pH values is slightly acidic? Put a ring around the correct answer.

(ii) One of the acids found in apple juice is malic acid. The structure of malic acid is shown below.

On the structure of malic acid above, put a ring around a carboxylic acid functional group. [1]

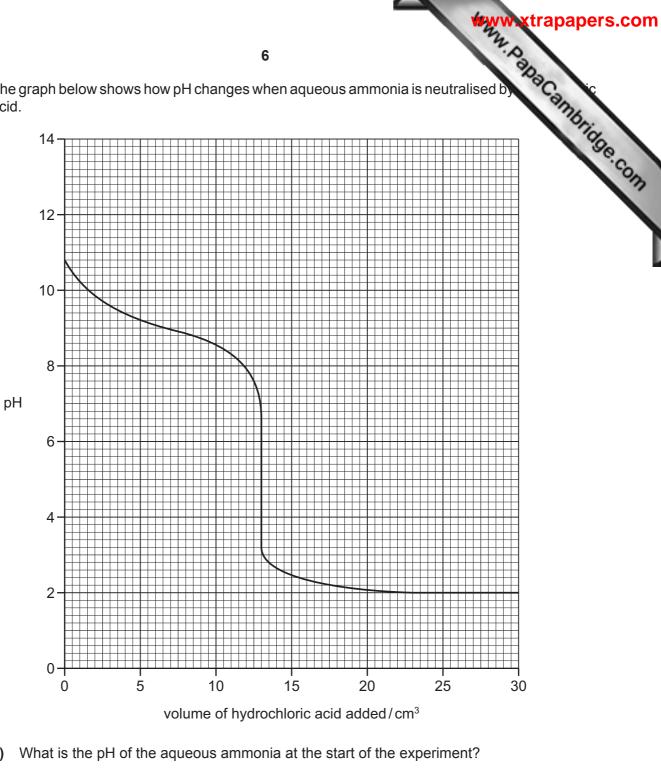
[Total: 9]


3 Hydrogen chloride gas can be prepared by the action of concentrated sulfuric accelerated.

$$H_2SO_4 + 2NaCl \rightarrow Na_2SO_4 + 2HCl$$

(a) Write the word equation for this reaction.

[1]
Γ.1


- (b) Hydrogen chloride dissolves in water to form hydrochloric acid.
 - (i) Complete the dot-and-cross diagram to show the arrangement of the outer shell electrons in water.

[2]

- (ii) Describe what you would observe when a few drops of silver nitrate solution are added to hydrochloric acid.
 -[2]

(c) The graph below shows how pH changes when aqueous ammonia is neutralised by acid.

(i)	What is the pH of the aqueous ammonia at the start of the experiment?	
		[1]
(ii)	What volume of hydrochloric acid has been added when the pH is 10?	
		[1]

(iii) What volume of hydrochloric acid has been added when the pH is changing most quickly?

(d) Concentrated hydrochloric acid reduces manganese(IV) oxide, MnO_2 , to make the chloride.

$$\mathrm{4HC}\,l \; + \; \mathrm{MnO_2} \; \rightarrow \; \mathrm{MnC}\,l_2 \; + \; \mathrm{C}\,l_2 \; + \; \mathrm{2H_2O}$$

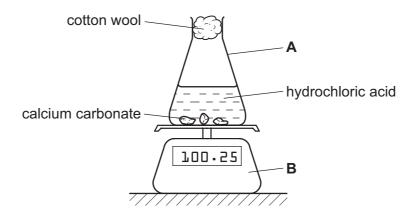
How does this equation show that manganese(IV) oxide gets reduced?

......[1

(e) The table shows some properties of four metals, A, B, C and D, and their oxides.

metal	density in g/cm³	boiling point /°C	colour of oxide	charge on the metal ion
Α	2.99	2831	white	3+
В	0.53	1342	white	1+
С	7.86	2750	black or red-brown	2+ or 3+
D	7.14	907	white	2+

Which one of these metals is a transition metal? Use the information in the table to explain your answer.	
	[2

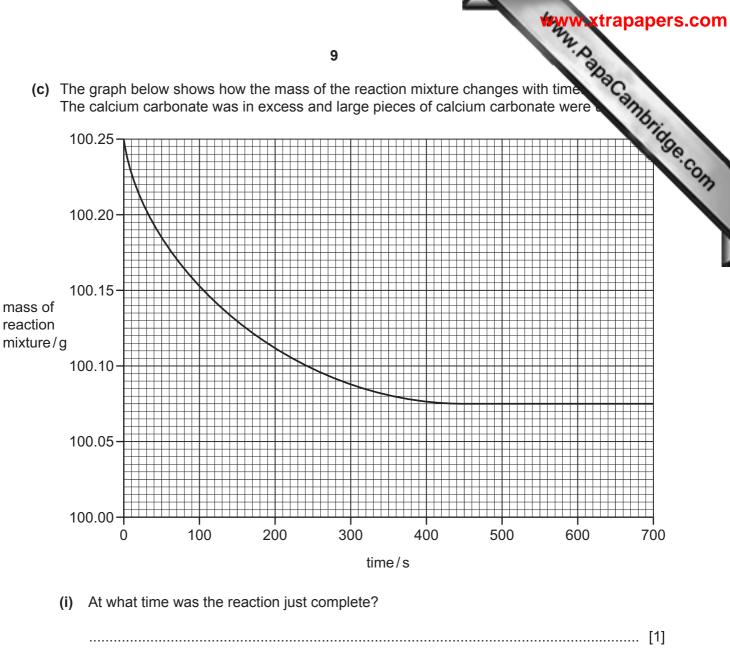

[Total: 11]

- 4 Calcium carbonate reacts with dilute hydrochloric acid.
 - (a) Complete the symbol equation for this reaction.

$$\mathsf{CaCO_3} \ + \ \ldots \ldots \mathsf{HC}\mathit{l} \ \to \ \mathsf{CaC}\mathit{l}_2 \ + \ \mathsf{CO_2} \ + \ \ldots \ldots \ldots$$

8

(b) The rate of this reaction can be followed using the apparatus shown below.

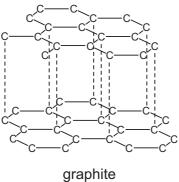

(i)	State the names	of the pieces	of apparatus	labelled A	and B.
-----	-----------------	---------------	--------------	------------	--------

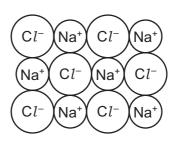
Α	
В	
	[2]

(ii)	Explain w	vhy the mass	of the	reaction	mixture	decreases	with time.
------	-----------	--------------	--------	----------	---------	-----------	------------

[1]
 [י]

(c) The graph below shows how the mass of the reaction mixture changes with time The calcium carbonate was in excess and large pieces of calcium carbonate were


		[1]
(ii)	Calculate the total loss in mass of the reaction mixture in this experiment.	
		[1]
(iii)	How does the rate of reaction change when:	
	smaller pieces of calcium carbonate are used,	
	the temperature is decreased,	
	the concentration of hydrochloric acid is decreased?	


[3]

(d)	Wh	en heated, calcium carbonate breaks dowr	n to form calcium oxide and carbon				
	Whi Tick	ich two words from the list below describe two boxes.	this reaction?				
		combustion					
		decomposition					
		endothermic					
		exothermic					
		oxidation	[2]				
(e)	Cal	cium oxide is used in flue-gas desulfurisati	on.				
	(i)	Explain how flue-gas desulfurisation work	S.				
			[2]				
	(ii)	Give one other use of calcium oxide.					
			[1]				
			[Total: 15]				

WANN, PAPAC CAMBRIDGE. COM

The structures of graphite and sodium chloride are shown below. 5

sodium chloride

(a)	Des	scribe the similarity and differences in these structures.
		[4]
(b)		aphite is a form of carbon. bon is an element.
	(i)	What is meant by the term <i>element</i> ?
		[1]
	(ii)	Write a symbol equation for the complete combustion of carbon.

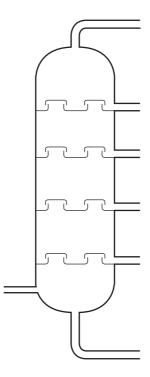
[2]

)	The table sh	nows some prop		substances, A , B , C and D .	Cannonidae, Con
	substance	melting point /°C	boiling point	electrical conductivity	Mridge
	Α	– 7	+59	does not conduct	COM
	В	– 157	-152	does not conduct	
	С	+769	+1930	conducts when molten but not when solid	\
	D	+1410	+2355	does not conduct	

Which one of these substances, A, B, C or D,

(i)	is a liquid at room temperature,	[1]
(ii)	is a giant ionic structure,	[1]
(iii)	is a noble gas,	[1]
(iv)	is a giant covalent structure?	[1]

[Total: 11]


* homole Randa Canada C

6 The table below shows some properties of the first five members of the alkane homological

alkane	molecular formula	boiling point	density of the liquid alkane in g/cm³
methane	CH ₄	-164	0.47
ethane	C ₂ H ₆	-88	
propane	C ₃ H ₈	-42	0.59
butane	C ₄ H ₁₀	0	0.60
pentane		+36	0.63

(a)	(i)	What do you understand by the term <i>homologous series</i> ?	
	(ii)	Deduce the molecular formula for pentane.	
			[1]
	(iii)	Describe how the boiling points of these alkanes change as the number of carbon ator increases.	ns
			[1]
	(iv)	Deduce the density of liquid ethane.	
			[1]
(b)		thane is a fuel which is a gas at room temperature. te the name of a fuel which is:	
	a s	olid at room temperature,	
	a lid	quid at room temperature.	
			[2]

(c) The diagram below shows a distillation column used to separate petroleum fractions.

- (i) On the diagram above:
 - put a letter **X** to show where the temperature in the column is lowest,
 - put a letter **F** to show where the fraction containing the largest molecules is collected,
 - put a letter **M** to show where petroleum enters the distillation column.

[3]

(ii) The refinery gas fraction contains ethane.
Hydrogen is one of the products formed when ethane is cracked.
Complete the symbol equation for the cracking of ethane.

C_2H_6	\rightarrow	 +	
			[2]

(iii) State the conditions needed for cracking.

[2]	
	$\Gamma \Omega 1$
	 141

[Total: 14]

- 7 Gallium and aluminium are in Group III of the Periodic Table.
- ade of gallium (a) The melting point of gallium is 30 °C. Use the kinetic particle theory to explain what happens when a spoon made of gallium into a cup of tea at 40 °C.

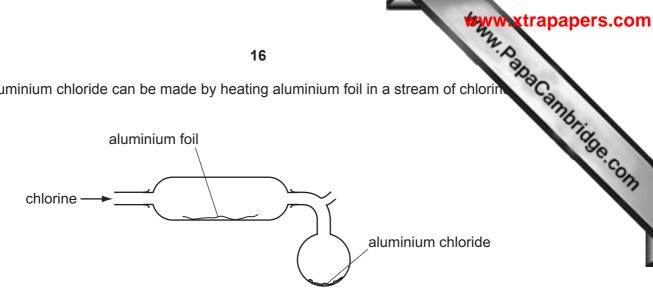
In your answer, refer to:

•	the change	of state	which	occurs
---	------------	----------	-------	--------

the change in the arrangement of the particles,

•	the	change	in	the	motion	of	the	particles.
_	uic	CHAINGE	111	uic	111011011	O.	uic	particies.

		[4]


(b) Gallium burns in air at a high temperature to form gallium(III) oxide. Complete the symbol equation for this reaction.

.....Ga +
$$3O_2 \rightarrowGa_2O_3$$

[2]

(c) Explain why aluminium is often used in containers for food and drinks.

(d) Aluminium chloride can be made by heating aluminium foil in a stream of chloring

16

- (i) On the diagram above, draw an arrow to show where heat should be applied. [1]
- (ii) At temperatures between 178 °C and 400 °C, aluminium chloride has the structure shown below.

Deduce the molecular formula of this structure.

(iii) Some properties of aluminium and silver are shown in the table below.

	cost	density in g/cm³	electrical conductivity	melting point /°C
aluminium	high	2.7	good	660
silver	very high	10.5	very good	962

Use the information in the table to suggest why aluminium rather than silver is used in overhead power cables.

[Total: 11]

17

BLANK PAGE

BLANK PAGE

BLANK PAGE

			VII)	WW.	Astrapapers.com Astrapapers.com
6/1	Γn	Lutetium 71	ځ	Lawrendum 103	Cambridge
1/3	Υb	Ytterbium 70	No	Nobelium 102	age CO.
691	Ħ	Thulium 69	Md	Mendelevium 101	13
		_	_	Ε	

The Periodic Table of the Elements **DATA SHEET**

							T Hydrogen	20	Group			≡	2	>	> a		4 He lium 2 20 20
Lithium 3 23 23 Na Sodium 11	Beryllium 4 24 Magnesium 12											B Boron 5 27 A1 Auminium 13	Carbon 6 Carbon 78 Silicon 14	Nitrogen 7 31 Phosphorus 15	_	Fluorine 9 35.5 C 1 Chlorine	Neon 10 40 Argon
39 Potassium 19 85	Ca Calcium 20	Scandium 21	Titanium 22	Vanadium 23	Chromium 24	Mn Manganese 25	26 Iron 101	59 Cobalt 27	59 Nickei 28 106	Cu Copper 29	Zn Zinc 30 2112	70 Ga Gallium 31	73 Ge Germanium 32	75 AS Arsenic 33	Selenium 34	80 Br Bromine 35	Krypton 36
Rb Rubidium 37	Strontium 38	98	Zrconium 40 178	Niobium 41 181	Ę	Tc Technetium 43	Ruthenium 44	Rhodium 45	Palladium 46	Ag Silver 197	Cadmium 48 201	Indium 49	Sn 11n 50 207	Sb Antimony 51 209	Tellurium 52	lodine 53	X Xenon
Caestum 55 Fr Franctum 87	Barium 56 226 Radium 88	Lanthanum * 57 * * 227	Hafnium 72	Ta Tantalum 73	Tungsten 74	Renium 75	Osmium 76	Iridium 77	Pt Platinum 78	Au Gold	Hg Mercury 80	Thallium 81	Pb Lead	Bismuth 83	Po Polonium 84	At Astatine 85	Radon 86
*58-71 190-103	*58-71 Lanthanoid serie 190-103 Actinoid series	*58-71 Lanthanoid series 190-103 Actinoid series a = relative atomic mass	nic mass	140 Ce Cerium 58	Praseodymium 59	Neodymium 60	Pm Promethium 61	Samarium 62	152 Eu Europium 63	Gd Gadolinium 64	159 Tb Terbium 65	162 Dy Dysprosium 66	165 Ho Holmium 67	167 Er Erbium 68	169 Tm Thulium 69	Yb Ytterbium 70	Lu Lutetium 71
Key	×	X = atomic symbol b = proton (atomic) number	lbol nic) number	Thorium	Pa Protactinium 91	Uranium	Neptunium 93	Pu Plutonium 94	Americium	Curium 96	Bk Berkelium 97	Californium 98	ES Einsteinium 99	Fm Fermium 100	Mendelevium 101	Nobelium 102	Lr Lawrendum 103

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.