MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/06
Paper 6 (Extended), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 3				Mark Scheme: Teachers' version	Syllabus
	IGCSE - October/November 2011	0607			
3					

3 (a)

Number of regular hexagons	2	3	4	5	6
Greatest perimeter (cm)	$\mathbf{1 0}$	$\mathbf{1 4}$	$\mathbf{1 8}$	$\mathbf{2 2}$	26

(b) $4 x+2$ oe

4	$6 x+2$ oe	1	
5	(a) $(y-2) x+2$ oe (b) $\begin{array}{ll} x=24, y=3 & x=12, y=4 \\ x=8, y=5 & x=6, y=6 \\ x=4, y=8 & x=3, y=10 \\ x=2, y=14 & x=1, y=26 \end{array}$	$\begin{gathered} 2 \\ \\ \text { 2FT } \\ \mathrm{C} \end{gathered}$	1 for $y-2$ seen ft their part (a) 1 for one or two correct pairs C opportunity
		C1	1 for two C opportunities seen
			[Total: 20]

Page 5	Mark Scheme: Teachers' version	Syllabus
	IGCSE October/November 2011	0607

4Square based: top $=400 \mathrm{~cm}^{2}:$ sides $=800 \mathrm{~cm}^{2}$ Circular based: Top $=369(.05 ..) \mathrm{cm}^{2}:$ sides $=738(.1 ..) \mathrm{cm}^{2}$ Yes, both in ratio - top : sides $=1: 2$	CFT	C opportunity for statement that FT their areas

