CANDIDATE NAME

CENTRE NUMBER

CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/02
Paper 2 (Extended)
October/November 2011
45 minutes
Candidates answer on the Question Paper
Additional Materials: Geometrical Instruments

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
Do not use staples, paper clips, highlighters, glue or correction fluid.
You may use a pencil for any diagrams or graphs.
DO NOT WRITE IN ANY BARCODES.
Answer all the questions.

CALCULATORS MUST NOT BE USED IN THIS PAPER.

All answers should be given in their simplest form.
You must show all the relevant working to gain full marks and you will be given marks for correct methods even if your answer is incorrect.
The number of marks is given in brackets [] at the end of each question or part question.
The total number of marks for this paper is 40 .

This document consists of 8 printed pages.

Formula List

For the equation

$$
a x^{2}+b x+c=0
$$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Curved surface area, A, of cylinder of radius r, height h.

Curved surface area, A, of cone of radius r, sloping edge l.

Curved surface area, A, of sphere of radius r.

Volume, V, of pyramid, base area A, height h.

Volume, V, of cylinder of radius r, height h.

Volume, V, of cone of radius r, height h.

Volume, V, of sphere of radius r.

$A=2 \pi r h$
$A=\pi r l$
$A=4 \pi r^{2}$
$V=\frac{1}{3} A h$
$V=\pi r^{2} h$
$V=\frac{1}{3} \pi r^{2} h$
$V=\frac{4}{3} \pi r^{3}$
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
$a^{2}=b^{2}+c^{2}-2 b c \cos A$

Area $=\frac{1}{2} b c \sin A$

Answer all the questions.
1 (a) Write 375×10^{12} in standard form.

> Answer(a)
(b) Calculate 75% of $\$ 2.40$.

Answer(b) \$

(c) Solve the equation $|x+1|=2$.

$$
\operatorname{Answer}(c) x=\ldots \quad \text { or } x=
$$

2

(a) $\mathrm{n}(\mathrm{U})=20, \mathrm{n}(A)=10, \mathrm{n}(B)=7, \mathrm{n}(A \cup B)=13$.

Find
(i) $\mathrm{n}(A \cup B)^{\prime}$,

Answer(a)(i)
(ii) $\mathrm{n}(A \cap B)$.

Answer(a)(ii)
(b) On the Venn diagram, shade the region $A \cup B^{\prime}$.

3 The equation of a straight line is $\quad 3 x+4 y=12$.
Write the equation in the form

$$
y=m x+c .
$$

4 The volume of a sphere of radius 3 cm is $k \pi \mathrm{~cm}^{3}$.
Find the value of k.

5 (a) Simplify $\sqrt{125}$.

Answer(a)
(b) Simplify $\frac{1}{\sqrt{6}-\sqrt{3}}$ by rationalising the denominator.
(a) Write down the next term in the sequence.

> Answer(a)
(b) Find the 8th term in the sequence.

> Answer(b)
(c) Find an expression for the nth term of the sequence.

7 Factorise completely.
(a) $x^{2}-2 x-24$
(b) $x y^{2}-4 x z^{2}$

The diagram shows the vectors $\overrightarrow{O P}=\mathbf{p}$ and $\overrightarrow{O Q}=\mathbf{q}$.
R is on $Q P$ such that $Q R=\frac{1}{4} Q P$.
Find the following vectors in terms of \mathbf{p} and \mathbf{q}.
Give each answer in its simplest form.
(a) $\overrightarrow{P Q}$

$$
\text { Answer(a) } \overrightarrow{P Q}=
$$

(b) $\overrightarrow{O R}$

The die in the diagram has a number on each face.
The numbers are $0,0,1,2,4,6$.
The die is rolled until it shows 0 on the top face.
Find the probability that this happens for the first time on the third roll.

10 Solve the following equation.

$$
\frac{2 x+1}{3}+\frac{x+1}{2}=9
$$

11 (a) $3=\log _{p} 8$
Write down the value of p.

$$
\text { Answer(a) } p=
$$

(b) $\log 12+\log 9=q \log 2+r \log 3$

Find the values of q and r.

$$
\begin{aligned}
\text { Answer(b) } q & = \\
r & =
\end{aligned}
$$

12 An object moves in a circle with speed v.
The force on the object is F.
F varies directly as v^{2}.
When $v=5, F=200$.
(a) Find a formula for F in terms of v.

$$
\operatorname{Answer}(a) F=
$$

(b) (i) Find F when $v=2$.

$$
\text { Answer(b)(i) } F=
$$

(ii) Find v when $F=968$.

