

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/42

Paper 4 (Extended) May/June 2017

MARK SCHEME
Maximum Mark: 120

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

® IGCSE is a registered trademark.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2017 Page 2 of 7

Question	Answer	Marks	Partial Marks
1(a)	1598 final answer	3	M2 for (23 970 × 0.8) ÷ 12 oe or M1 for 23 970 × 0.2 or better or for 23 970 ÷ 12
1(b)(i)	23 500 nfww	3	M2 for 23 970 ÷ 1.02 oe or M1 for 23 970 = 102%
1(b)(ii)	2024 nfww	3	M2 for $\frac{\log\left(\frac{30000}{23970}\right)}{\log 1.03}$ oe soi by 7.59or sketch leading to 7.59 or 2 trials, one giving 7 and one giving 8 or M1 for $23970 \times \left(1 + \frac{3}{100}\right)^n$ [= 30 000] oe seen or reasonable sketch or 3 trials of 23970×1.03^n or 1 trial giving 8.
2(a)(i)	Reflection, $y = x$	1	
2(a)(ii)	Enlargement [with centre] (2, 1) [scale factor] $\frac{1}{4}$ oe	2	B1 for each
2(a)(iii)	Translation $ \begin{pmatrix} 3 \\ -5 \end{pmatrix} $	2	B1 for each
2(b)(i)	Correct triangle (0, 0), (0, 2), (-2, 3)	2	SC1 for rotation 90° clockwise about (0, 0) or rotation 90° anti-clockwise about different centre
2(b)(ii)	Correct triangle (0, 0), (4, 0), (6, 2)	2	SC1 for stretch with s.f. = 2 , x -axis invariant or stretch with y -axis invariant with different scale factor.
3(a)	6 points correct	3	B2 for 4 or 5 correct or B1 for 2 or 3 correct
3(b)	Positive	1	
3(c)(i)	y = 0.787x + 0.356 final answer	2	0.7874 to 0.7875 , 0.3555 to $0.3556B1 for one corrector for y = 0.79x + 0.36 final answer$
3(c)(ii)	5.4[0]	1	FT from their (c)(i)

Question	Answer	Marks	Partial Marks
4(a)(i)	$\begin{pmatrix} -1.5\\1 \end{pmatrix}$ oe	1	
4(a)(ii)	$\begin{pmatrix} 10 \\ -1 \end{pmatrix}$	2	B1 for each
4(a)(iii)	$\sqrt{13}$ final answer	2	M1 for $(-3)^2 + 2^2$ oe soi by 3.61 or 3.605 to 3.606 $\sqrt{13}$ in working implies M1
4(b)	Correct B clearly indicated	2	B1 for vector $\begin{pmatrix} 1 \\ 5 \end{pmatrix}$ drawn not from A or $\begin{pmatrix} 1 \\ 5 \end{pmatrix}$ seen or correctly following through, from A , their incorrect vector seen. or either $\begin{pmatrix} -3 \\ 2 \end{pmatrix}$ or $\begin{pmatrix} 4 \\ 3 \end{pmatrix}$ correctly drawn only if one starts from A .
5(a)	2500	2	M1 for 119050 ÷ 47.62
5(b)(i)	[0]610 or 610 am oe	2	B1 for [0]025 or [0]340 or 28 h 130 min oe seen
5(b)(ii)	722 or 721.7	3	M1 for 4150 ÷ <i>their</i> 5h 45 min B1 for 5.75 oe
5(b)(iii)	5 h 32 (or 31.8 to 32[.0]) min	3	M1 for 4150 ÷ 750 soi by 5.53 or 5.53 B1FT for correct conversion to hours and minutes
6(a)(i)	[x =] cv oe	1	
6(a)(ii)	$[y =] kv^2$ oe	1	
6(a)(iii)	$[d =] cv + kv^2 \text{ or } v(c + kv) \text{ oe}$	1	FT
6(b)(i)	$750 = 12c + 12^2 k \text{ oe}$	M1	isw any cancelling
6(b)(ii)	$2050 = 20c + 20^2 k \text{ oe}$	1	isw any cancelling
6(c)	[c =] 2.5 oe cao $[k =] 5 cao$	3	 M1 for correctly eliminating one variable from their equations in this part. or sketches of lines A1 for either solution If zero scored SC1 for their values satisfying one equation.
6(d)	8100	2	M1 for correct substitution of 40 into their (a)(iii) containing their values of c and k .

Question	Answer	Marks	Partial Marks
7(a)	Correct sketch showing bearings and distances	3	B1 for 310° bearing approx correct (270 to 360) and marked B1 for 250° bearing approx correct (180 to 270) and marked B1 for distances correctly marked
7(b)	120	1	
7(c)	$40^2 + 65^2 - 2 \times 40 \times 65 \times \cos their$ 120	M1	their 120 must be between 0 and 180 Allow $\cos 120 = \frac{40^2 + 65^2 - [\]^2}{2 \times 40 \times 65}$
	91.78 to 91.79	A2	A1 for 8425 or $5\sqrt{337}$
7(d)	288 or 287.8	4	M2 for $\frac{40\sin(their120)}{91.8}$ oe
			or M1 for $\frac{\sin \theta}{40} = \frac{\sin(their 120)}{91.8}$ oe If cosine rule used, M2 for explicit expression or M1 for implicit.
			A1 for 22.2 or 22.16 to 22.17
			If 0 scored SC2 for answer 108 or 107.8
8(a)	To the second se	3	With correct shape with two max on right of <i>y</i> -axis and one on left, all above <i>x</i> -axis and reasonable quality or B2 for correct shape and all above <i>x</i> -axis or B1 for correct shape
	Correct sketch		
8(b)	-270, 90, 450	3	B1 for each SC2 for all correct but with y co-ords or SC1 for two correct with y co-ords
8(c)	750, 870	2	B1 for each
8(d)	x < 54.7	1	54.74 to 54.75
	164 < x < 267	2	163.5 to 163.6, 266.6 B1 for one inequality or B1 for both values seen
			If 0 scored, B1 for straight line with negative gradient crossing curve three times between $x = 0$ and $x = 400$. May be freehand.

Question	Answer	Marks	Partial Marks
9(a)(i)	$\frac{1}{2} \times x \times (x+2) \times \frac{\sqrt{3}}{2} \text{ oe or better}$ final answer	2	M1 for $\frac{1}{2} \times x \times (x+2) \times \sin 60$
9(a)(ii)	equating to $18\sqrt{3}$ and correct elimination of $\sqrt{3}$	M1	Dependent on correct answer used from (a)(i) or answer to (a)(i) contains sin60 but is otherwise correct.
	Completion with at least one step	A1	No errors or omissions
9(b)(i)	7.54 or 7.544, –9.54 or –9.544	2	B1 for each If 0 scored, M1 for substitution in formula or sketch or $(x + 1)^2 - 73$ or better
9(b)(ii)	6.53 or 6.54 or 6.529 to 6.536	2	M1 for $\sin 60 = \frac{[]}{their7.54}$ oe
10(a)(i)	$[y=] \frac{1}{2}x + 1$	3	M1 for gradient = $\frac{8-2}{14-2}$ oe M1 for correct substitution of (2, 2) or (14, 8) into $y = (their \ m)x + c$ oe soi
10(a)(ii)	[y=]-2x+26	3	M1 for gradient = $\frac{-1}{their} \frac{1}{\frac{1}{2}}$ M1 for substituting (11, 4) into $y = (their - 2)x + c$ oe soi
10(b)	Correct substitution and completion of (10, 6) for both lines oe	2	B1 for either OR M1 for correct elimination of x or y from equations A1 for completion to solution (10, 6)
10(c)	(9, 8)	1	
10(d)	30 cao	4	M3 for $\left[\frac{1}{2}\right] \times \sqrt{12^2 + 6^2} \times \sqrt{2^2 + 4^2}$ oe or B2 for two of $\sqrt{12^2 + 6^2}$ oe (AC) , $\sqrt{2^2 + 4^2}$ oe $(BD \text{ or } MC)$, $\sqrt{8^2 + 4^2}$ oe (AM) , $\sqrt{2^2 + 1^2}$ oe $(MD \text{ or } MB)$ or B1 for one of these. $(M \text{ is the intersection of } AC \text{ and } BD)$ OR M3 for full area e.g. $[0.5 \times 12 \times 6 - 0.5 \times 6 \times 7] \times 2$ or B2 for 2 correct areas evaluated

Question	Answer	Marks	Partial Marks
11(a)	12.9 or 12.86 to 12.87	2	M1 for evidence of at least three mid-interval values 9.5, 11, 13, 15.5 soi by 95, 550, 845, 697.5 or 2187.5
11(b)	Correct Histogram	4	B1 for correct bar widths no gaps
			B3 for 4 correct heights and corresponding scale from 0 or B2 for 3 correct heights and corresponding scale from 0 or B1 for 2 correct heights and corresponding scale from 0
			or B1 for 3 correct frequency densities soi
11(c)(i)	$\frac{198}{2873}$ oe	2	M1 for $\frac{45}{170} \times \frac{44}{169}$
11(c)(ii)	$\frac{100}{2873}$ oe	3	M2 for $\frac{10}{170} \times \frac{50}{169} + \frac{50}{170} \times \frac{10}{169}$ oe or M1 for $\frac{10}{170} \times \frac{50}{169}$
12(a)	11	1	
12(b)	6	2	B1 for h(2) = 1 soi or $4(x^2 - 3) + 2$ or better
12(c)	-3	2	M1 for $4x = -10 - 2$
12(d)	$h(x) \geqslant -3$	1	Allow $y \ge -3$
12(e)	$\frac{x-2}{4}$ oe final answer	2	M1 for $y - 2 = 4x$ or $x = 4y + 2$ or $\frac{y}{4} = x + \frac{2}{4}$
12(f)	Stretch x-axis invariant [Scale factor] 2 OR	3	B1 for each
	Reflection $y = -2.70 + 6.75$	M1 A2	
	OR		
	Rotation (2.5, 0) 167 (167.47) or 12.5 (12.53) clockwise	M1 A1 A1	
12(g)	$[y =] x^2 - 4x + 1$	3	M2 for $y = (x - 2)^2 - 3$ or M1 for $x - 2$ seen in a quadratic If 0 scored, SC1 for $y = x^2 + 4x + 1$