

Wany, Papa Cambridge, com MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

0580 MATHEMATICS

0580/41

Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus V
	IGCSE – May/June 2011	Syllabus 0580
reviations		
correct	answer only	
o correct	solution only	
ep depend	ent	
	hrough after error	
w ignore	ubsequent working	
e or equi		
C Special		
•	wrong working	
	g rounding to	
•	implied	

Qu.	Answers	Mark	Part Marks
1 (a)	(i) $\frac{1380}{62+53} \times 62$	1	Allow 115 for 62 + 53
	(ii) 7.27 (7.271 to 7.272)	1	
	(iii) 42	2	M1 for $\frac{3150}{75}$ oe
(b)	(i) 235	3	B2 for angle $ACS = 55$ or angle $ACN = 125$ B1 for 55 seen
	(ii) 12.6 (12.58 to 12.59)	3	M2 for $\frac{4}{6} \times 18.9$ or $4 + 4 + 2 \times 4 \times \cos 55$ or $4 + 4 + 2 \times 4 \times \sin 35$ oe
			(M1 for $\frac{4}{6}$ soi or 2×4×cos55 or
			6 $2 \times 4 \times \sin 35 \operatorname{soi}$ oe)
(c)	1500	3	M2 for $\frac{1380}{1-0.08}$ oe (M1 for recognition that 92% = 1380)

Page 3		Mark Scheme:	Teachers' ve May/June 2011		Syllabus 0580	K
		1903E – N	nay/June 2011		0380	20
(a)	Monday $\frac{3}{5}$	$, \frac{2}{5}$	1		Syllabus 0580	10.
	Tuesday $\frac{4}{7}$	$-, \frac{3}{7}$	1			
	$\frac{5}{7}$	$\frac{2}{7}$	1			
(b)	(i) $\frac{12}{35}$	oe cao	2	M1 $\frac{3}{5} \times \frac{4}{7}$ f	ît their tree	
	(ii) $\frac{9}{35}$	oe cao	2	M1 $\frac{3}{5} \times \frac{3}{7}$ f	t their tree	
	(iii) $\frac{19}{35}$	oe	2 ft) + $\frac{10}{35}$ ft their tree throughout	(iii)
				5 1	$\frac{1}{7}$ + their (b)(ii)	
				or $1 - \frac{3}{5} \times \frac{4}{7} - \frac{4}{7}$	$\frac{2}{5} \times \frac{2}{7}$	
(c)	$\frac{34}{35}$ oe ca	10	3		$\begin{array}{c} \text{nroughout} (\mathbf{iv}) \\ 2 & 1 \\ (1 & 1 \end{array}$	
					$\frac{2}{5} \times \frac{2}{7} \times \frac{1}{4} \left(= 1 - \frac{1}{35} \right)$ $2 1 \left(1 \right)$	
				_	$\frac{2}{7} \times \frac{1}{4} \left(= \frac{1}{35} \right) $	
				or M2 for $\frac{1}{5}$ + (M1 for any 1	$\frac{2}{5} \times \frac{5}{7} + \frac{2}{5} \times \frac{2}{7} \times \frac{3}{4}$ two of these)	
(a)	3 www		3	M1 for $p = \frac{1}{6}$	$\frac{k}{(m+1)}$ or A1 for $k = 36$	
				``	$< 9 = p \times 12$ oe	
(b)	(i) (<i>x</i> + 5	(x-5)	1			
	(ii) $\frac{(2x+1)}{(x-5)}$	$\frac{1}{1}$ final answer	3	B2 for factor	s $(2x+1)(x+5)$ or SC2 for fin	ıal
		,		answer $\frac{x+\frac{1}{2}}{x-5}$	- 	
					(x+b) where $ab = 5$ or	
					or SC1 for $(x + \frac{1}{2})(x + 5)$)	
(c)	x < 7 oe fi	inal answer	3		56 where * is inequality or = $\frac{1}{20}$ or $36 - 3x$)	sign

*		Mark Scheme: Teac			Syllabus 2		
			IGCSE – May/J	une 201'	<u> </u>	0580 737	
4 (a)	(i) $(\cos (HFG)) = \frac{6^2 + 14^2 - 12^2}{2 \times 6 \times 14}$ 58.4 (58.41)		M2 A2	Syllabus Image: state of the state of			
	(ii)		< 14 × sin (their 58.4) oe 35.77 to 35.78	M1 A1 ft	ft their (i) Correct or ft		
(b)		$(\sin(RQP)) = \frac{\sin(117) \times 12}{18}$		M2	M1 for impl	icit form	
	36.4	or 36.44.		A1			
5 (a)	(i) Correct translation (see diagram)		2	SC1 for trar	nslation by $\begin{pmatrix} -3\\ k \end{pmatrix}$ or by $\begin{pmatrix} k\\ -2 \end{pmatrix}$		
	(ii)	Correct	reflection (see diagram)	2	SC1 for refle	ection in $y = -1$	
(b)	(i)	Stretch, (factor) y-axis or	3, x = 0 invariant	1 1 1			
	(ii)	Rotation 90° cloc $(1, -1)$		1 1 1	Accept –90°		
(c)	(i)	$\begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}$	ft from (b)(i)	2 ft	\[$ \begin{pmatrix} 0 \\ 3 \end{pmatrix} (\text{ft from (b)(i)}) \text{ or } \begin{pmatrix} k & 0 \\ 0 & 1 \end{pmatrix} $ raic or numeric but $\neq 1$ or 0	
	(ii)	Rotation 180° Origin	,	1 1 1	Accept O or		
6 (a)	23.6	(23.60))	2	M1 for 14^2 +	$+ 19^2$	
(b)	2300) or 2303 1	to 2304 cao	4	M3 for $2 \times \frac{1}{2}$ their $BC \times 3$ M2 for 4 of M1 for $\frac{1}{2} \times \frac{1}{2}$	these added	
(c)	4788	4788 or 4790 cao		2	M1 their triangle area \times 36		
(d)	43(.0	0) or 43.04	4 to 43.05 cao	2	M1 for (thei	$(a))^2 + 36^2$ or $36^2 + 19^2 + 14^2$	
(e)	18.9	° to 19.0	2° cao	3	M2 for inv s	$\sin\left(\frac{14}{\text{their }CE}\right) \text{ or }$	
					inv cos $\left(\frac{\sqrt{1}}{\sqrt{1}}\right)$	$\frac{14}{9^2 + 36^2}$ or $\frac{9^2 + 36^2}{9^2 + 36^2}$ or complete longer	
					methods	arly identifying angle <i>CEA</i>)	

Page 5 Mark Scheme: Teach				Syllabus 0580			
	IGCSE – May/June 2011 0580						
7 (a)	1(.00) 4((.00) 11.1(1) 1(.00) 0.25	3 B2 for 4 corre				
(b)	 10 points plotted Correct shaped curve through 10 points (condone 2 points slightly missed) 2 separate curves not crossing <i>x</i>-axis and not touching or crossing <i>y</i>-axis 		P3 ft C1 ft B1	B1 for 6 or 7			
(c)	-0.85 to -0.75 cao 0.75 to 0.85 cao						
(d)	Tangent drawn (ruled) at $x = 1.5$ - 3 to -2		T1 2	SC1 for answ	daylight rise/run dependent on tangent er in range 2 to 3 tes M but not the T mark		
(e)	(i) $y = x - 2$ oe		1				
	(ii) line r	uled to cross curve	2 ft	B1 for gradie	(i) in form $y = mx + c$, $m \neq 0$, $c \neq 0$ nt ft or y intercept ft but again to t all possible points		
	(iii) 2.5 to	o 2.7 cao	1	Dependent or	n (e)(i) correct		
8	14.2		3	$14 + 7 \times 15 +$ (allow one err M1dep for ÷ 2)	$\begin{array}{l} 10 \times 11 + 8 \times 12 + 16 \times 13 + 11 \times \\ 8 \times 16 + 6 \times 17 + 9 \times 18 \ (1065) \\ \text{ror or omission)} \\ \Sigma f(10 + 8 + 16 + 11 + 7 + 8 + 6 + 9) \\ \text{one further error or omission)} \end{array}$		
	14 13		2 1	M1 for 37th,	37.5th or 38th seen		
(b)	(i) 21, 3	0, 15	2	B1 for 2 corre	ect		
	(ii) 20 1.05	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	1, 1, 1 for eac	h correct vertical pair		
(c)	$\frac{10 \times 2.5 + 10}{10 + 10}$	$\frac{12 \times 3 + 4n}{12 + n} (= 3.1)$	M2	M1 for either	numerator or denominator seen		
	multiplyi	ng across and collecting terms	M1	<u>^</u>	numerator and denominator $(4 - 3, 1) \times n$		

A1

www 4

(*n* =) 8

their (68.2 - 25 - 36) = their $(4 - 3.1) \times n$

D		Mark Scheme: Tea	ahara' ya	roion	Syllabus	trapar apacamb
		IGCSE – May/			Syllabus 0580	Ba
						an
9 (a)	$x \ge 3$	$y \ge 2$	1, 1			10
(b)	$x + y \leq 9$		1			
(c)	$6x + 14y \leq$	÷ 84	1			
(d)	x = 3 $y =$	= 2	1, 1		and freehand lines long	enough to
	x + y = 9		2		rrect quadrilateral through (0, 9) or (9, 0)	
	Line from	(0, 6) to $(14, 0)$	2	B1 for throug	gh (0, 6) or (14, 0)	
		adrilateral unshaded or clearly	/ 1			
(e)	\$ 70		2	B1 for considering (7, 2)		
10(a)	(A 1) 8 2		2	B1 for 3 correct		
	$(B \ 4) \ 8 \ (C \ 4) \ 9$	12 16 20 16 25 36	1 2	B1 for 3 corre	ect	
(b)	512		1			
	169		1			
(c)	25 99		1			
(d)		4 <i>n</i> oe	1, 1			
(4)		$(1)^2 - 4n$ oe but isw	1, 1	Likely oe is ($(n-1)^2$	