Cambridge IGCSE ${ }^{\text {TM }}$

ADDITIONAL MATHEMATICS	0606/21
Paper 2	October/November 2021
MARK SCHEME	

Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE ${ }^{\text {M }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:
Marks awarded are always whole marks (not half marks, or other fractions).
GENERIC MARKING PRINCIPLE 3:
Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Maths-Specific Marking Principles
1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.
A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.
When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
nfww	not from wrong working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied

Question	Answer	Marks	Partial Marks
1	$x^{2}+3 x-10-3 x-6 * 0$ oe	M1	Condone one sign or arithmetic error * can be = or any inequality sign
	Critical Values: 4 and -4	A1	
	$x>4$ or $x<-4$	A1	Mark final answer
2	Eliminate one unknown $x(11-3 x)+x^{2}=15$	M1	
	$2 x^{2}-11 x+15[=0]$	A1	
	Factorises or solves their 3-term quadratic	M1	
	$\begin{aligned} & x=\frac{5}{2}, y=\frac{7}{2} \\ & x=3, y=2 \end{aligned}$	A2	A1 for $x=\frac{5}{2}, x=3$ nfww or $y=\frac{7}{2}, y=2 \mathrm{nfww}$
3(a)	$\frac{\mathrm{d}}{\mathrm{~d} x}(\sin 3 x)=3 \cos 3 x \text { soi }$	B1	
	Applies the correct form of the quotient rule	M1	
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{(x+1)(3 \cos 3 x)-(2+\sin 3 x)[1]}{(x+1)^{2}}$	A1	FT their $\frac{\mathrm{d}}{\mathrm{d} x}(\sin 3 x)$
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\left(\frac{\pi}{6}+1\right)\left(3 \cos \frac{3 \pi}{6}\right)-\left(2+\sin \frac{3 \pi}{6}\right)[1]}{\left(\frac{\pi}{6}+1\right)^{2}}$	M1	
	$\left[\frac{\mathrm{d} y}{\mathrm{~d} x}=\right] \frac{-3}{\left(\frac{\pi}{6}+1\right)^{2}}$	A1	not from wrong working

Question	Answer	Marks	Partial Marks
3(b)	[When $x=0$] $y=2$	B1	
	[When $x=0$] $\frac{\mathrm{d} y}{\mathrm{~d} x}=1$	B1	$\text { FT their } \frac{\mathrm{d} y}{\mathrm{~d} x}$
	$\left[m_{\perp}=\right]=-1$	M1	$\text { FT } \frac{-1}{\text { their } 1}$
	$y-2=-x$ oe	A1	FT ${ }_{\text {their }} m_{\perp}$
4	$(\sqrt{5}-2) a+(\sqrt{5}+2) b=1$ oe, soi	M1	
	$2 b-2 a=1$	A1	
	$a+b=0$ or $a \sqrt{5}+b \sqrt{5}=0$	A1	
	Solves their linear simultaneous equations in a and b as far as $a=\ldots$ or $b=\ldots$	M1	dep on previous M1
	$a=-\frac{1}{4}, b=\frac{1}{4}$	A1	
5(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=6 \tan x \sec ^{2} x$	B2	B1 for $\frac{\mathrm{d}}{\mathrm{~d} x}\left(\tan ^{2} x\right)=2(\tan x)^{1} \sec ^{2} x$
5(b)	$\begin{aligned} & 6 \tan x \sec ^{2} x-3 \sec x \operatorname{cosec} x=0 \\ & 3 \sec x(2 \tan x \sec x-\operatorname{cosec} x)=0 \text { oe } \end{aligned}$	B1	NB division by $\sec x$ is $\mathbf{B 0}$
	$2 \tan ^{2} x=1$ oe	B1	
	$\tan x=[\pm] \sqrt{\frac{1}{2}} \text { or }[\pm] 0.707[1 \ldots]$	M1	FT $\tan ^{2} x=k$ where $k>0$
	35.3 or $35.2643 \ldots$ rot to 2 or more dp 215.3 or $215.2643 \ldots$ rot to 2 or more dp 144.7 or $144.7356 \ldots$ rot to 2 or more dp 324.7 or $324.7356 \ldots$ rot to 2 or more dp	A2	no extras in range A1 for any two correct answers

Question	Answer	Marks	Partial Marks
6	$(m+1) x^{2}+(8-m) x+3=0{ }_{\text {oe, soi }}$	B1	
	$(8-m)^{2}-4(m+1)(3)$	M1	
	$m^{2}-28 m+52[* 0] \mathrm{oe}$	M1	dep on previous M1; condone one sign error where * is = or any inequality sign
	Factorises or solves their 3-term quadratic expression or equation for CVs	M1	dep on use of $b^{2}-4 a c$
	Finds correct CVs: 2, 26	A1	
	$2<m<26$	A1	Mark final answer
7(a)	$\log 5^{x-2}=\log 3+\log 2^{2 x+3}$ soi	M1	
	$(x-2) \log 5=\log 3+(2 x+3) \log 2$ oe	M1	dep on previous M1; Condone one sign or bracketing error
	$x=\frac{\log 3+3 \log 2+2 \log 5}{\log 5-2 \log 2} \text { soi }$	A1	
	$x=28.7$	A1	
7(b)	$\begin{aligned} & \log _{3}\left(\frac{y^{2}+11}{9}\right)=\log _{3}(y-1) \\ & \text { or } \log _{3}\left(\frac{y^{2}+11}{y-1}\right)=2 \text { oe } \end{aligned}$	B1	
	$\frac{y^{2}+11}{9}=y-1 \quad \text { or } \frac{y^{2}+11}{y-1}=9 \mathrm{oe}$	M1	
	$y^{2}-9 y+20=0$	A1	
	Solves their 3-term quadratic	M1	dep on previous M1
	$y=4, y=5$	A1	
8(a)	252	B1	

Question				nswer	Marks	Partial Marks
8(b)	$\begin{aligned} & {[2 \text { men and } 3 \text { others }=] 120} \\ & {[3 \mathrm{men} \text { and } 2 \text { others }=] 60} \\ & {[4 \text { men and } 1 \text { other }=] 6} \end{aligned}$				M2	M1 for any two correct
	186				A1	
	Alternative method					
	$\begin{aligned} & {[0 \mathrm{men}=] 6} \\ & {[1 \mathrm{man} \text { and } 4 \text { others }=] 60} \end{aligned}$				(M1)	
	(their 252)-(6+60)				(M1)	
	186				(A1)	
8(c)	M	W	C		M2	for at least four out of five correct values soi or M1 for any two or three correct values soi
	1	3	1	32		
	1	2	2	24		
	2	2	1	72		
	2	1	2	24		
	3	1	1	32		
	184				A1	
	Alternative method					
	$\begin{aligned} & {[0 \text { men }=] 6} \\ & {[0 \text { women }] 6} \\ & {[0 \text { children }] 56} \end{aligned}$				(M1)	
	(their 252) - (6+6+56)				(M1)	
	184				(A1)	
9(a)			40		2	B1 for an attempt at the correct order of composition with at most one error
9(b)	Complete, correct method to find the inverse				M1	
	$\left[\mathrm{g}^{-1}(x)=\right] \sqrt{x-1}$ final answer				A1	

Question	Answer	Marks	Partial Marks
9(c)	$x^{3}-x^{2}-4=0$	M1	condone one sign or arithmetic error
	Shows $x-2$ is a factor or shows that $x=2$ is a solution	M1	
	Uses $x-2$ is a factor to find $x^{2}+x+2$	B2	B1 for a quadratic factor with 2 terms correct
	Indicates that $x^{2}+x+2$ has no real roots and states $x=2$ as the only solution	A1	dep on all previous marks awarded
10(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=-5 x^{-2}+2 x-1 \text { oe }$	M2	M1 for any two correct terms
	[When $x=1] \frac{\mathrm{d} y}{\mathrm{~d} x}=-4$ and $y=5$	A1	
	$y-5=-4(x-1)$ oe	M1	FT their $\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right\|_{x=1}$ and y; dep on at least M1
	$y=-4 x+9$	A1	FT
10(b)	$\mathrm{F}(x)=5 \ln x+\frac{x^{3}}{3}-\frac{x^{2}}{2}(+c)$	B2	B1 for $5 \ln x$ and one other term correct
	$F(3)-F(1)$	M1	dep on at least B1 for integration
	$5 \ln 3+\frac{14}{3}$	A1	

Question	Answer	Marks	Partial Marks
11(a)	$l=\frac{4}{r}$	B1	
	$h^{2}=l^{2}-r^{2}$ or $l^{2}=r^{2}+h^{2}$	M1	
	$\begin{aligned} & h^{2}=\left(\frac{4}{r}\right)^{2}-r^{2} \text { or }\left(\frac{4}{r}\right)^{2}=r^{2}+h^{2} \\ & \text { or } l^{2}=\frac{16}{r^{2}} \text { and } h^{2}=l^{2}-r^{2} \end{aligned}$	M1	FT their l; dep on previous M1
	Correct, convincing completion to $h^{2}=\frac{16}{r^{2}}-r^{2}$	A1	
	Alternative method		
	$l=\sqrt{r^{2}+h^{2}}$	(B1)	
	$\pi r \sqrt{r^{2}+h^{2}}=4 \pi$	(M1)	
	$\left(\sqrt{r^{2}+h^{2}}\right)^{2}=\left(\frac{4}{r}\right)^{2}$	(M1)	
	Correct, convincing completion to $h^{2}=\frac{16}{r^{2}}-r^{2}$	(A1)	
11(b)	$\frac{\pi}{3} r^{2} \sqrt{\frac{16}{r^{2}}-r^{2}}$	M1	
	$\frac{\pi}{3} \sqrt{r^{4}\left(\frac{16}{r^{2}}-r^{2}\right)}$ and correct completion to $\frac{\pi}{3} \sqrt{16 r^{2}-r^{6}}$	A1	

Question	Answer	Marks	Partial Marks
11(c)	$\frac{\mathrm{d} V}{\mathrm{~d} r}=\frac{\pi}{3}\left(\frac{1}{2}\left(16 r^{2}-r^{6}\right)^{-\frac{1}{2}}\right)\left(32 r-6 r^{5}\right) \mathrm{oe}$	B3	B2 for $k\left(16 r^{2}-r^{6}\right)^{-\frac{1}{2}}\left(32 r-6 r^{5}\right)$ where k is a constant and $k \neq 0$ or B1 for $k\left(16 r^{2}-r^{6}\right)^{-\frac{1}{2}} \times(\mathrm{f}(r))$ where $\mathrm{f}(r) \neq 32 r-6 r^{5}$
	Equates their $\frac{\mathrm{d} V}{\mathrm{~d} r}$ to 0 and solves as far as $r^{4}=\ldots$	M1	$\begin{aligned} & \text { FT their } \mathrm{f}(r)=a r+b r^{5} \\ & \text { for } a, b \neq 0 \end{aligned}$
	$r=1.52$ or $1.519[67 \ldots]$ rot to 4 or more sf or $\frac{2}{\sqrt[4]{3}}$ oe	A1	

