CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

MARK SCHEME for the May/June 2014 series

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/42 Paper 4 (Extended), maximum raw mark 120

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page		2 Mark Scheme				Syllabus	Paper		
		IGCSE – May/June 2014				0607	42		
1	(a)	8.5 ×	10 ⁶	1					
	(b)	5.1 million oe		2	M1 for 8.5 $[\times 10^6] \times 0.95^{10}$ oe soi by figs 509 or 5089				
	(c)	23.7 million oe (2.37 × 10 ⁷) 78.5 or 78.48 to 78.54 2017		3	M2 for 8.5 or 2371 M1 for 8.5 integer	M2 for 8.5 $[\times 10^6] \div 0.95^{20}$ oe soi by figs 237 or 2371 M1 for 8.5 $[\times 10^6] = a \times 0.95^n$ oe <i>n</i> positive integer			
	(d) (e)			3	3 M2 for (<i>their</i> 23.7 million – <i>their</i> 5.1 m. <i>their</i> 23.7 million × 100 or $(1 - 0.95^{30})$ × i.e. full method or M1 for 1 – 0.95 ³⁰ or (<i>their</i> 23.7 million – <i>their</i> 5.1 million 23.7 million or (<i>their</i> 5.1 million ÷ <i>their</i> 23.7 million M2 for $\frac{\log(\frac{3.5}{their 8.5})}{\log 0.95}$ or $\frac{\log(\frac{3.5}{their 5.1})}{\log 0.95}$ oe or appropriate sketch indicating solution or M1 8.5 × $[10^{6}] \times 0.95^{n} = 3.5 \times [10^{6}]$ of				
					or powers going beyond 2010 shown or appropriate sketch but not indicating solution SC2 for 17.3 or 17.29 to 17.30 or 7.3 or 7.29 7.34 or 18 or 2018				
2	(a)			3	B1 for basic cosine shapeB1 for amplitude approx correctB1 for period approx correct		ect		
	(b)	(0, 10) (-9, -10) (9, -10)		1 1 1					
	(c)	Sketch		1	reasonable straight lines meeting at $(-2, 0)$, all the rest above the <i>x</i> -axis and crossing curve twice				
	(d)	3 -3.94 or -3.941 to -3.940		1 1	SC1 for both correct answers but with <i>y</i> co-ordinates in answer or both correct answers given as an inequality				

	Page 3		Mark Scheme			Syllabus	Paper
			IGCSE – May/June 2014			0607	42
3	(a)	Trian	g = (-1, 3) (-3, 3) (-3, 4)	2	B1 for x or y movement correct		•••
	(b)	Rotat 90 cl (1, 7)	ion ockwise oe	 B1 for x of B2 triangle (-4, 7) or SC1 FT other centra then writte B1 Rotatio B1 90 clock B1 (1, 7) If more th marks are 		e drawn vertices (-5, 5) (-5, 7) for rotation 90 clockwise about re en answers on kwise oe tan one transformation, these 3 B1 e lost	
4	(a)	27.6	or 27.60 to 27.63	4	M1 for $\frac{2}{3} \times \pi \times 1.3^3$ (4.6[0] or 4.601 to 4. M1 for $\pi \times 1.3^2 \times 3.5$ (18.6 or 18.58) M1 for $\frac{1}{3} \times \pi \times 1.3^2 \times 2.5$ (4.42 or 4.424 to		4.601 to 4.602) 18.58) 2 or 4.424 to 4.425)
	(b)	232 c	or 231.8 to 232.1	1FT	FT their (a	a) × 8.4	
	(c)	9.2[0] or 9.197	3	M2 for <i>the</i> or M1 for	<i>ir</i> $(2.5 + 3.5 + 1.3)$ s.f. = $\sqrt[3]{2}$ oe (1.25)	× ³ √2 oe 992)
5	(a)	5 Poi	nts plotted	2	$\pm \frac{1}{2} \text{ small}$ B1 for 3 or	square 4 correct	
	(b)	Posit	ive	1	Ignore con	ment on strength	
	(c) (i)	42.1	or 42.06 to 42.07	1			
	(ii)	29.6		1			
	(d)	[y =] or 0.6	0.665 <i>x</i> + 1.64 6646 to 0.6647 and 1.638 to 1.639	2	B1 for eith or SC1 for	er a or b correct 0.66x + 1.6	
	(e)	18.9	or 18.91 to 18.93	1FT	FT their (d	l)	
	(f)	Corre	ect ruled line	2	M1 for line or B1 for c	e through <i>their</i> mea orrect freehand line	n point plotted
	(g)	0.665 their	5x + 13.6 (0.665x + 1.64) + 12 oe	1FT			
6	(a)	-0.4	oe	1			
	(b)	(0, –	4)	1			
	(c)	2.5 <i>x</i> -	- 2 oe	3	M1 FT for M1 for sub or $y - 3 = r$	2.5 or $-1/$ their (a) ostituting (2, 3) into n(x-2)	<i>their</i> $y = 2.5x + c$

	Page 4		Mark Scheme			Syllabus	Paper
			IGCSE – May/June 2014			0607	42
7	(a) 12 1		3 4	2	M1 for 53 - by 25 + 17	7 - x = 29 oe soi	
	(b)	n(<i>B</i>)	∪ <i>C</i>)' oe	1	e.g. $n(B' \cap isw = any)$	C') value	
					In parts (c cancelling No ratios o If decimal	e), (d), (e) do not p or converting. or words are accep forms, usual 3 sig	enalise incorrect oted. fig rule applies.
	(c)	$\frac{13}{40}$		1FT	FT $\frac{their 1}{40}$	3	
	(d)	$\frac{11}{130}$	0e	3	M2 for <u>the</u>	$\frac{\operatorname{eir} 12}{40} \times \frac{\operatorname{their} 11}{39}$ $x \times x^{-1}$	
	(e)	$\frac{13}{50}$ c	e	3	M2 for $\frac{the}{the}$ or M1 for	$\frac{40}{40} \times \frac{39}{39}$ $\frac{2}{2} \frac{13}{25} \times \frac{1}{1} \frac{12}{1} 1$	
8	(a)			3	B1 for each SC2 for co	h branch rrect but branches j	joined
	(b)	x = - $x = 3$ $y = 0$	1	1 1 1			
	(c)	$\begin{array}{c} x < - \\ -0.88 \\ x > 3 \end{array}$	-1 36[0] < x < 3 .39 or 3.386)	1 1 1	Condone ≤	≤ throughout	
	(d)	$\frac{2(x-x)}{(x-x)}$	$\left(\frac{-1}{4}\right)x$ of final answer	2	M1 for cle least twice or SC1 for	ar attempt to substi $\frac{2(x+1)}{(x-2)(x+2)}$	tute $x - 1$ for x at

	Page 5		Mark Scheme			Syllabus	Paper		
			IGCSE – May/June 2014		0607	42			
9	(a) (i)	2		1					
	(ii)	5		1					
	(iii)	3		1					
	(iv)	3.04	or 3.037 to 3.038	2	M1 for Σfx used (at least 3 correct seen) soi by 240				
	(v)	4		1					
	(b) (i)	Coul	d be e.g. 0.5 to 6.5 or clear equiv	1					
	(ii)	1.5[<	$x \le]2.5$	1					
10	(a)	2 = 1 -6 =	$a^{2}+b+c$ oe $(-3)^{2}-3b+c$ oe	1 1					
	(b) Sim b + a Subt		lified to = 1 and $-3b + c = -15$ oe fraction or $1 - b = -15 + 3b$ oe	B1 B1	i.e. correctly eliminating one variable from				
		Com	pletion to $b = 4$ and $c = -3$ with no s	1	correct equations				
	(c) (i) -4.65 0.65		5	1 1	SC1 for -4.646 to -4.645 and 0.645 to 0.45 If 0 scored M1 for correct substitution into formula or correct sketch oe				
	(ii)	<i>x</i> = –	2 oe final answer	1					
	(iii)	[y=]	-7	1					
11	(a) (i)	67		2	B1 for <i>ED</i>	<i>C</i> = 90			
	(ii)	29		2	B1 for <i>AC</i> or M1 for	D = 52 or 90 - 38 - 180 - (180 - 67) - 3	23 or $BDE = 29$ 88 oe		
	(iii)	46		1					
	(b) (i)	4.25	or 4.253 to 4.254	2	M1 for tan	$28 = \frac{PR}{8} \text{ or } \frac{\sin 62}{8}$	$\frac{2}{x} = \frac{\sin 28}{x}$ oe		
	(ii)	124		1					
	(iii)	17.[0] or 17.01 to 17.03	4	M3 for $\frac{56}{360} \times 2 \times 4.25$ oe or M1 for and M1 fo	$\frac{56}{360} \times 2 \times \pi \times 8 \text{ oe}$ $\frac{56}{360} \times 2 \times \pi \times 8 \text{ oe}$ $r \ their \frac{124}{360} \times 2 \times \pi \times 7 \times 8$	$\frac{4}{0} \times 2 \times \pi \times their$ × their 4.25 oe		

Page		6 Mark Scheme			Syllabus	Paper	
		IGCSE – May/June 2014			0607	42	
12	(a)	7.53 or 7.533		3	M2 for $\sqrt{(12.6^2 - 10.1^2)}$ oe or M1 for $x^2 + 10.1^2 = 12.6^2$ or better		
	(b)	95.1 or 95.12		3	M2 for $(12.6^2 + 13.8^2 - 19.5^2) \div (2 \times 12.6 \times 13.8)$ oe (implied by -0.089285) or M1 for $19.5^2 = 12.6^2 + 13.8^2 - 2 \times 12.6 \times 13.8 \cos \theta$		
	(c)	$\frac{1}{2} \times 13.8$	$10.1 \times their \ 7.53 + \frac{1}{2} \times 12.6 \times \sin their \ 95.1 \ oe$	M3	M1 for $\frac{1}{2}$, and M1 for	×10.1× <i>their</i> 7.53 r $\frac{1}{2}$ × 12.6 × 13.8 ×	× sin <i>their</i> 95.1 oe
		125 o	r 124.5 to 124.7	B1			
13	(a)	$\frac{x-4}{60}$	- oe	1			
	(b) (i)	$\frac{70x}{60}$	$+\frac{15(x-4)}{60}=33$ oe	M1			
		70x + 0x + 0x = 0	$x + 15 (x - 4) = 60 \times 33$ oe $\frac{x - 60}{60} = 33$	B1	e.g. $14x + 1$	$3(x-4) = 33 \times 12$	
		Comp errors	bletion to $17x - 12 = 396$ with no	A1			
	(ii)	24		2	B1 for 17 <i>x</i>	= 396 + 12 or 17x	=408
	(c)	45		2	M1 for 33	\div (20 + their 24) ×	60