

5-Aug-24

Objective: Complete iGCSE questions on working with circle theorems.

8/5/2024

8/5/2024

8/5/2024

9	(a)	65	1	
	(b)	115	1FT	FT 180 – <i>their</i> (a)

8/5/2024

12 (a)	18	2	M1 for $4x + 6x = 180$
(b)	18	2	M1 for $180 - 6x - 3x$
(c)	90	3	M2 for $180 - 3x - x - x$ or B1 for $CED = x$ or $DCE = 4x$

8/5/2024

8/5/2024

8/5/2024

5	(a)	Any 2 of the following		
		Angle ADX = Angle BCX and same segment oe Angle DAX = Angle CBX and same segment oe Angle AXD = Angle BXC and vertically opp oe	2	B1 for one of the three pairs or two pairs of angles without reas with incorrect reasons
	(b)	7.5 oe	2	M1 for $\frac{2}{3} = \frac{5}{BX}$ oe
	(c)	67.2 or 67.20 to 67.21 nfww	3	M2 for [cos =] $\frac{2^2 + 5^2 - 4.61^2}{2 \times 2 \times 5}$
	46			or M1 for $4.61^2 = 2^2 + 5^2 - 2 \times 2 \times 50$

8/5/2024

8/5/2024

	9	[p =] 75 [q=]105	2	B1 for each
- 1		-1 -		

8/5/2024

12(a)	35	1	
-------	----	---	--

© UCLES 2017 Page 3 of 4

0607/22

Cambridge IGCSE - Mark Scheme **PUBLISHED**

May/

Question	Partial Marks
12(b)	T 165 – their (a)
	8/5/2024
	8/5/2024
1	8/5/2024
5(a)	8/5/2024

5(a)	[Angle between] tangent [and] radius / diameter [=90] oe	1	
5(b)(i)	134	2	M1 for 360 – 90 – 90 – 46 oe
5(b)(ii)	23	2	M1 for (180 – their (i)) ÷ 2 oe
5(b)(iii)	67	2	FT (their (i)) ÷ 2 M1 for (their (i)) ÷ 2 oe
5(b)(iv)	113	2	FT 180 – their (iii) or (360 – their (i)) ÷ 2 M1 for 180 – their (iii) or (360 – their (i)) ÷ 2 oe
5(c)	44	3	M2 for $180 - 67 - 23 - 23 - 23$ oe or $360 - 226 - 67 - 23$ oe or B1 for angle $OBC = 23$ or 226 seen

7	[x =] 70	2	B1 for each
	[y =] 110		If 0 scored SC1 for their $x + their y$

8/5/2024

8/5/2024

8/5/2024

-	.		The state of the s
11(a)(i)	Angle X is common oe $\angle XCB = \angle XAD$ (angles in same segment) oe	0110	B1 for each If 0 scored SC1 for 2 pairs of angle reasons
11(a)(ii)	$\frac{XA}{XC} = \frac{XD}{XB}$ oe	1	
11(b)	8	2	M1 for $12 \times 7 = XA \times 6$ soi (impli
11(c)(i)	$\frac{49}{36}$ oe	1	
11(c)(ii)	$\frac{64}{25}$ oe	1	

8/5/2024

8/5/2024

8/5/2024

8/5/2024

16	[y=] 135 + 0.5x		- 1	M2 for $180 - y = 45 - 0.5x$ or M1 for $90 - x$ as angle at centre
				8/5/2024
				8/5/2024
15	[a =] 25 [b =] 100	2	B1	for each
		i	C	8/5/2024
	and the second s	0,		8/5/2024
9(a)	82 Opposite angles of a cyclic quadrilateral [add up to 180] oe		2	B1 for each
9(b)	No and any mention of Alternate Segment Theorem oe		1	1
••				8/5/2024

9

55

8/5/2024

8/5/2024

B1 for angle C = 70

or **M1** for $\frac{1}{2}(180 - their C)$

15	110	B1 for angle $RST = 70$
		or angle $RTA = 110$

8/5/2024

Question	Answer	Marks	Partial Marks
10(a)(i)	42	1	
10(a)(ii)	71	1	
10(a)(iii)	109	1	FT 180 – their(ii)
10(a)(iv)	29	1	
10(a)(v)	38	1	
10(b)	74.2 or 74.21 to 74.25		M1 for $[AB =] 2 \times 11 \cos 19$ oe M2 for $[AD =] \frac{theirAB \times \sin(their4)}{\sin(their109)}$ or $[BD =] \frac{theirAB \times \sin(their29)}{\sin(their109)}$ or M1 for $\frac{AD}{\sin their42} = \frac{theirAB}{\sin their109}$ or $\frac{BD}{\sin their29} = \frac{theirAB}{\sin their109}$ and M1 for $[Area =] 0.5 \times theirAB \times theirAD \times \sin(their29)$ or $[Area =] 0.5 \times theirAB \times theirBD \times \sin(their42)$ or $[Area =] 0.5 \times theirAD \times theirBD \times \sin(their42)$ or $[Area =] 0.5 \times theirAD \times theirBD \times \sin(their42)$ or $[Area =] 0.5 \times theirAD \times theirBD \times \sin(their42)$

•

(b) The radius of the circle is 11 cm.

Find the area of triangle ABD.

A, D, B and C lie on a circle, centre O. AP is a tangent to the circle at A and BP is a tangent to the circle at B. Angle $AOB = 142^{\circ}$ and angle $DAP = 42^{\circ}$.

- (a) Find the value of
 - (i) angle ABD,

(ii) angle ACB,

(iii) angle ADB,

Angle
$$ADB = \dots$$
 [1]

(iv) angle BAD,

(v) angle APB.

Points Q, R, S and T lie on the circle. AB is a tangent to the circle at T. Angle $RTB = 70^{\circ}$.

Find angle *RQT*.

A, B and C are points on a circle. TA is a tangent to the circle at A. CA = CB and angle $BAT = 70^{\circ}$.

Work out the value of x.

A, B, C and D are points on the circle. PBQ is a straight line.

(a) Find angle DCB, giving a reason for your answer.

	Angle DCB = because	
		[2]
(b)	Is PBQ a tangent to the circle? Give a reason for your answer.	[2]
	because	[1]

The diagram shows a cyclic quadrilateral.

Find the value of a and the value of b.

The diagram shows a circle, centre O. AOB is a straight line. BCD is a tangent to the circle at C.

Find y in terms of x.

8(a)	8(a) [Angle between] tangent and radius/diameter		
8(b)(i)	108	2	M1 for ADO = 36 soi

© UCLES 2018 Page 6 of 8

0607/42

Cambridge IGCSE – Mark Scheme PUBLISHED

May/、

Question	Answer	Marks	Partial Marks
8(b)(ii)	54	2	M1 for $\frac{their(\mathbf{b})(\mathbf{i})}{2}$ or $90 - 36$ or $\frac{180 - 2}{2}$
8(b)(iii)	90	1	
8(b)(iv)	18	1	
8(b)(v)	48	1	

(iii)	angle ABC,	
(iv)	angle CFD ,	Angle <i>ABC</i> = [1]
(v)	angle <i>CAB</i> .	Angle <i>CFD</i> =
	W. B. S.	Angle $CAB = \dots$ [1]

A, B, C and D lie on a circle, centre O. DEF is a tangent to the circle at D. AOCF and BCE are straight lines.

(a) Complete the statement.

(b) Find the value of

(i) angle AOD,

Angle AOD = [2]

(ii) angle ODC,

(b) XB = 6 cm, DC = 5 cm and XD = 7 cm.Calculate the length AB.

(c)) Find	the	value	of	these	fractions
-----	--------	-----	-------	----	-------	-----------

- Papacambridge Area of triangle ADX (i) Area of triangle CBX
- Area of triangle AYB (ii) Area of triangle CYD

A, B, C and D are points on the circle.

ABX, CDX, AYD and BYC are straight lines.

(a) (i) Explain why triangle ADX is similar to triang	angl	o triangl	e C	B	X
---	------	-----------	-----	---	---

(30	

(ii) Use part (a)(i) to show that $XA \times XB = XC \times XD$

O is the centre of the circle.

Find the value of x and the value of y.

((iii)	angle ACB,	
((iv)	angle ADB.	Angle <i>ACB</i> =
(c)		bisects angle ABC. I angle OAC.	Angle ADB =
	•	angle OAC.	Angle <i>OAC</i> =

[2]

[2]

Angle $OAC = \dots$ [3]

A, B, C and D lie on a circle, centre O. AP and BP are tangents to the circle. Angle $APB = 46^{\circ}$.

(a)	Com	nlete t	the	statement.

Angle $OAP = 90^{\circ}$ becauseB, (2) (2) (1) (1)[1]

(b) Find the value of

(i) angle AOB,

(ii) angle OAB,

A, B, C, D and E are points on the circle. Angle $CAD = 35^{\circ}$ and angle $EBD = 15^{\circ}$.

Find

(a) angle CBD,

Angle *CDE* =

A, B, C, D and E lie on the circle. Angle $BCE = 75^{\circ}$.

Find the value of p and the value of q.

(b) AX = 5 cm, DX = 2 cm and CX = 3 cm.Calculate BX.

(c) AD = 4.61 cm.

Calculate angle AXD.

A, B, C and D lie on the circle. The chords AC and BD intersect at X.

(a) Show that triangles ADX and BCX are similar. Give a reason for each statement that you make.

[2

A, B, C and D lie on a circle. ADE and BCE are straight lines that intersect at E.

BD = DE, angle BAD = 4x, angle BCD = 6x and angle BDC = 3x.

Find

(a) x,

(b) angle CBD,

(c) angle CDE.

 $Angle CBD = \dots$

A, B, C and D are points on the circle centre O. Angle $BOD = 130^{\circ}$.

(a) Find angle DCB.

(b) Find angle *BAD*.

