

5-Aug-24

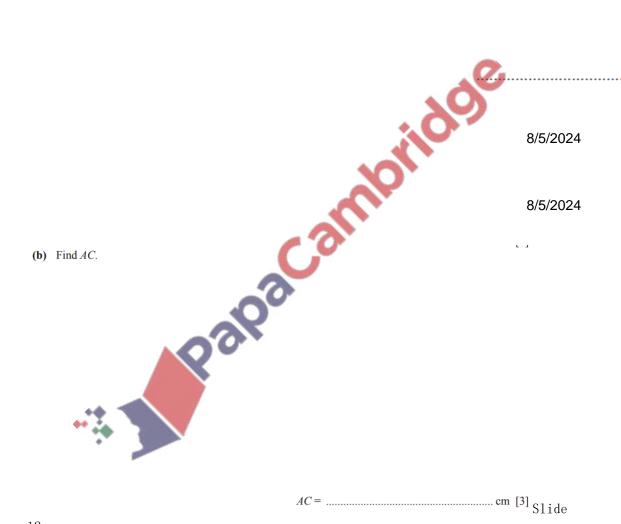
Objective: Complete iGCSE questions on Sine & Cosine Rule skills.

8/5/2024

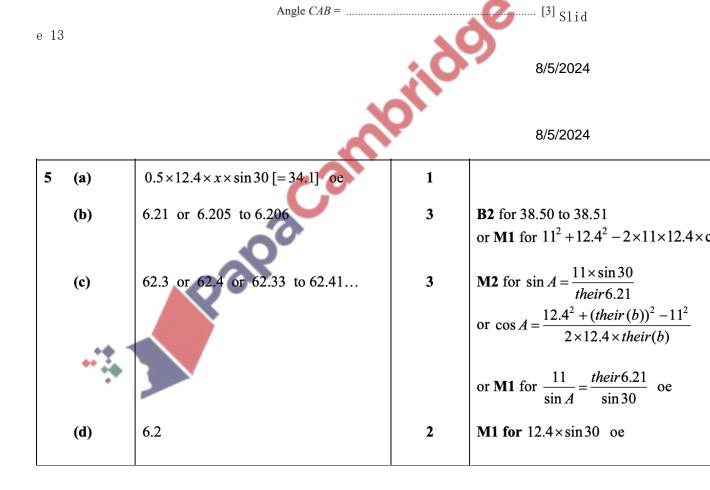
8/5/2024

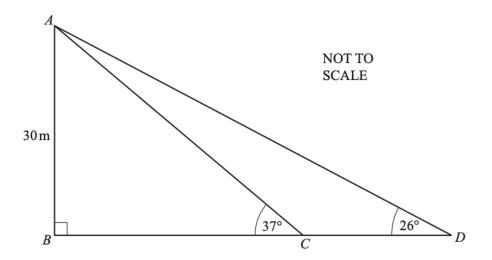
8/5/2024

8/5/2024

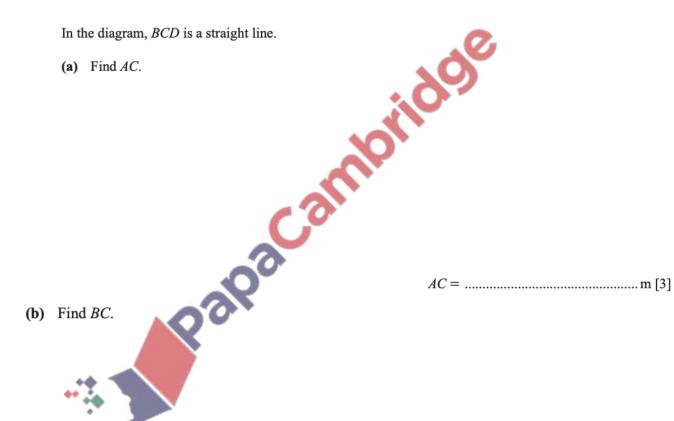

7	(a)	19.9 or 19.89 to 19.90	3	M2 for $36^2 - 30^2$ soi by 396 or M1 for $AD^2 + 30^2 = 36^2$ oe
	(b)	30 ÷ tan 68 oe	M2	M1 for $\tan 68 = \frac{30}{AC}$ oe
		12.12	A1	
	(c)	301 or 301.3 to 301.4 or 239 or 238.6 to 238.7	3	B2 for 31.3 or 31.30 to 31.35 or M1 for tan = $12.1 \div their$ (a) oe

8/5/2024


8/5/2024

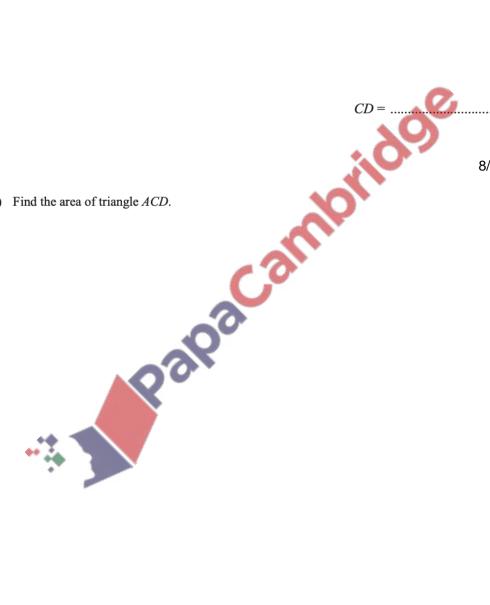

11 (a) $9^2 = (3x-1)^2 + (2x)^2 -2(2x)(3x-1)\cos 60 \text{ oe}$		M1		
		$81 = 9x^2 - 6x + 1 + 4x^2 - 6x^2 + 2x \text{ oe}$	A2	or B1 for $9x^2 - 3x - 3x + 1$
		$7x^2 - 4x - 80 = 0$	A1	Completion with no errors or omission

(c) Calculate the area of triangle ABC.


12

In the diagram, BCD is a straight line.

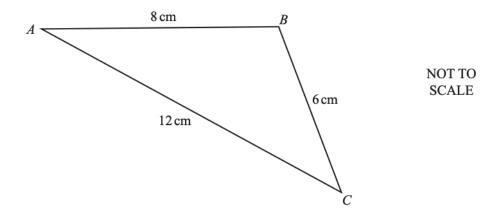
(a) Find AC.



(c) Find CD.

8/5/2024

(d) Find the area of triangle ACD.



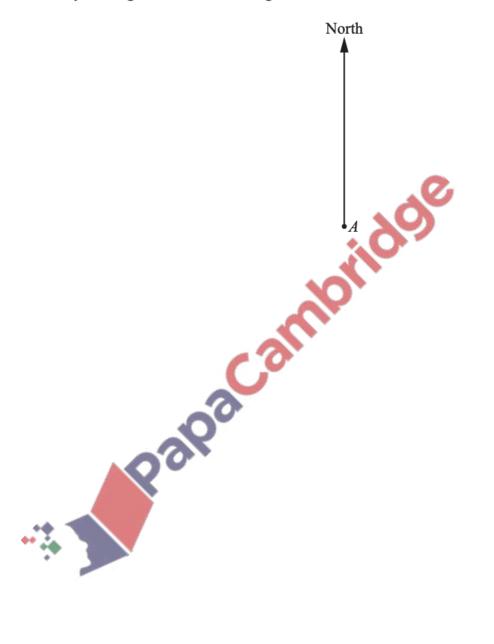
	_
m	$^{2}[2]$


3(a)	49.8 or 49.84 to 49.85	3	M2 for $\frac{30}{\sin 37}$ oe or M1 for $\sin 37 = \frac{30}{AC}$ oe
3(b)	39.7 or 39.8 or 39.74 to 39.81	3	M2 for $\frac{30}{\tan 37}$ or their (a) × cos 37 oe or M1 for tan 37 = $\frac{30}{BC}$ or cos 37 = $\frac{BC}{their}$

8/5/2024

3(c)	21.7 or 21.8 or 21.67	to 21.81	orii.	M2 for $\frac{30}{\tan 26} - their(b)$ or $\frac{(their(a)) \times \sin(180 - (180 - 37) - 26)}{\sin 26}$ or M1 for $\frac{30}{\tan 26}$ or $\frac{their(a)}{\sin 26} = \frac{CD}{\sin(180 - (180 - 37) - 26)}$ or
3(d)	325 or 326 or 327 or 325[.0] to 327.2	Car	2	M1 for $\frac{1}{2} \times their$ (c) × 30 oe

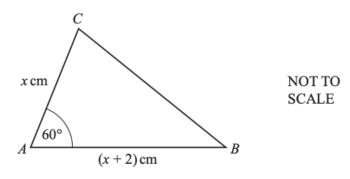
The diagram shows triangle ABC.


(b) Use the sine rule to find angle *BAC*.

Angle *BAC* =

			_
9(a)	$[\cos x =] \frac{8^2 + 6^2 - 2^2}{2 \times 6 \times 8} \text{ oe}$	M2	M1 for $12^2 = 8^2 + 6^2 - 2 \times 8 \times 6 \cos[]$
	117.3 or 117.2 to 117.3	B 1	
9(b)	$[\sin =] \frac{6 \times \sin(their(a))}{12} \text{ oe}$	M2	M1 for $\frac{6}{\sin A} = \frac{12}{\sin(their(a))}$ oe
	26.4 or 26.5 or 26.37 to 26.46	B 1	

- A ship sails 65 km on a bearing of 310° from A to B. It then changes course and sails 40 km on a bearing of 250° from B to C. The ship then returns to A.
 - (a) On the diagram, sketch the path of the ship from A. On your diagram show the bearings and distances.



(b)	Find angle ABC.	
(c)	Calculate AC and show that it rounds to 91.8 km, correct to the near	
(d) I	Find the bearing of C from A .	8/5/2024

8/5/2024

.....[4]

Question	Answer	Marks	Partial Marks
7(a)	Correct sketch showing bearings and distances	3	B1 for 310° bearing approx correct (270 marked B1 for 250° bearing approx correct (180 marked B1 for distances correctly marked
7(b)	120	1	
7(c)	$40^2 + 65^2 - 2 \times 40 \times 65 \times \cos their$ 120	M1	their 120 must be between 0 and 180 Allow $\cos 120 = \frac{40^2 + 65^2 - [\]^2}{2 \times 40 \times 65}$
	91.78 to 91.79	A2	A1 for 8425 or $5\sqrt{337}$
7(d)	288 or 287.8	oi!	M2 for $\frac{40\sin(their120)}{91.8}$ oe or M1 for $\frac{\sin\theta}{40} = \frac{\sin(their120)}{91.8}$ oe If cosine rule used, M2 for explicit express M1 for implicit. A1 for 22.2 or 22.16 to 22.17 If 0 scored SC2 for answer 108 or 107.8.

In the diagram AC = x cm, AB = (x + 2) cm and angle $A = 60^{\circ}$.

(a) (i) Find an expression, in terms of x, for the area of triangle ABC. Give your answer in surd form.

The area of triangle $ABC = 18\sqrt{3}$ cm². Show that $x^2 + 2x - 72 = 0$.

Question	Answer	Marks	Partial Marks	
9(a)(i)	$\frac{1}{2} \times x \times (x+2) \times \frac{\sqrt{3}}{2}$ oe or better final answer	2	M1 for $\frac{1}{2} \times x \times (x+2) \times \sin 60$	
9(a)(ii)	equating to $18\sqrt{3}$ and correct elimination of $\sqrt{3}$	M1	Dependent on correct answer used from or answer to (a)(i) contains sin60 but is otherwise correct.	

8/5/2024

Question	Answer	Marks	Part Marks
7(a)	9.77 or 9.766	3	M2 for $\frac{8}{\cos 35}$ oe
			or M1 for $\cos 35 = \frac{8}{AB}$ oe
7(b)	60.6 or 60.61	3	M2 for $\frac{6^2 + 9^2 - 8^2}{2 \times 6 \times 9}$
			or M1 for $8^2 = 6^2 + 9^2 - 2 \times 6 \times 9 \cos \theta$
		19,	8/5/2024
(b) the length	BD,		
	BD, Palpacainile		
	0300		
•		<i>BD</i> =	cm [2]
			8/5/2024

(c) the length CD,

		CI	0 =
		0,	8/5/2024
9(a)	12.2 or 12.21 to 12.22	2	M1 for $\sin 70 = \frac{1}{13}$ oe
9(b)	15.5 or 15.49	2	M1 for $tan 50 = \frac{BD}{13}$ oe
9(c)	5.32 or 5.316 to 5.319	4	B1 for [angle $DBC =]20$ M1 for $(theirBD)^2 + 15^2 - 2 \times their$ $15\cos(the$ A1 for 28.26 to 28.30
9(d)	art 195	3	M2 two of $0.5 \times 13 \times 13 \times \sin 40$ oe $0.5 \times 13 \times their BD$ oe $0.5 \times 15 \times their BD \times \sin(their 20)$ or M1 for one of above

8/5/2024

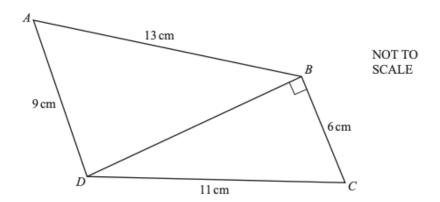
8/5/2024

8/5/2024

8/5/2024

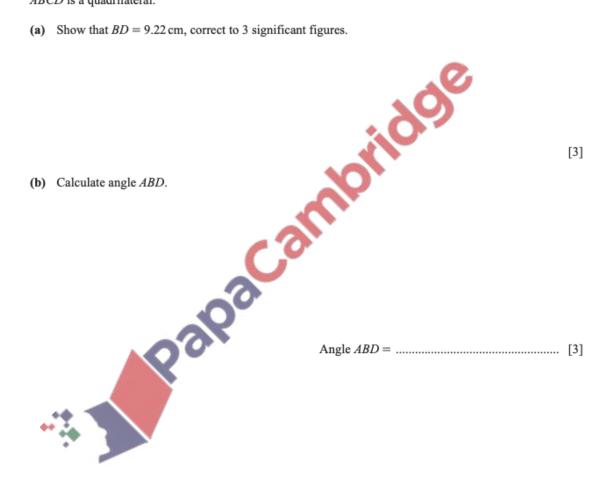
8/5/2024

		20	8/5/2024
		ilo	8/5/2024
6(c)(ii)	$tan[x] = \frac{their 46.5}{their 187}$ oe soi by 13.9	M1	
	284 or 283.9 to 284.0	B2	M1 for 270 + <i>their x</i> oe


8/5/2024

(c) Calculate the total area of the quadrilateral ABCD.

(d) Calculate the length of the diagonal AC.

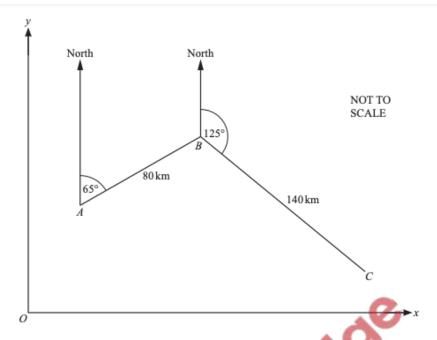

AC =

8(a)	Correct Pythagoras statement leading to $11^2 - 6^2$ or $121 - 36$ or 85	M2	or M1 for $[BD]^2 + 6^2 = 11^2$ oe
	9.219	A1	9.219 implies M1 A1
8(b)	43.8 or 43.80 nfww	3	M2 for $\cos[ABD] = \frac{9.22^2 + 13^2 - 2 \times 9.22 \times 13^2}{2 \times 9.22 \times 13^2}$ or M1 for $9^2 = 9.22^2 + 13^2 - 2 \times 9.22 \times 13$ co
8(c)	69.1 or 69.13 to 69.14 nfww	3	M1 for $0.5 \times 9.22 \times 6$ oe M1 for $0.5 \times 9.22 \times 13 \times \sin$ (their
8(d)	17. 7 or 17.69	3	M1 for $6^2 + 13^2 - 2 \times 6 \times 13 \cos(90 + 41)$ A1 for 313 or 312.9 to 313.0

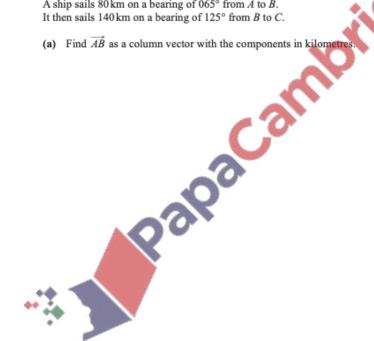
ABCD is a quadrilateral.

(a) Show that BD = 9.22 cm, correct to 3 significant figures.

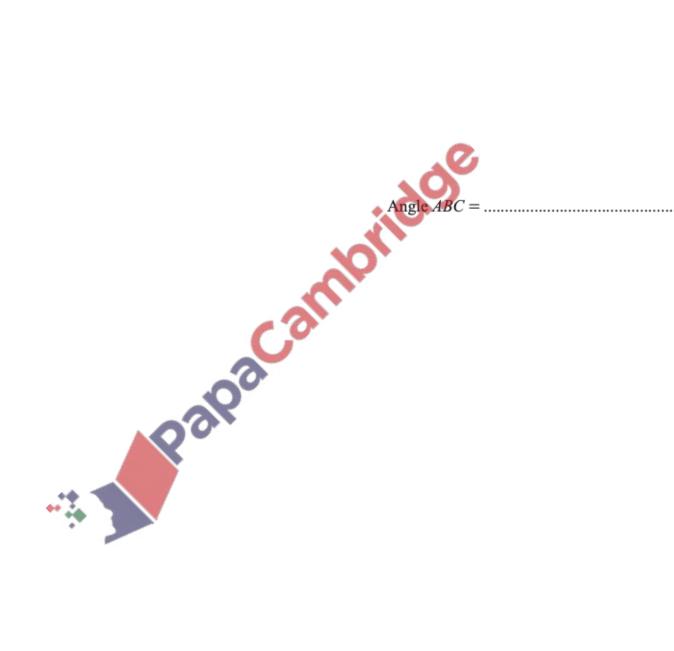
1	I	1	1
6(a)	(72.5 or 72.50 33.8 or 33.80 to 33.81)	4	B2 for 72.5 or 72.50
	(33.8 or 33.80 to 33.81)		or M1 for $\frac{[]}{80} = \sin 65$ oe seen (80
			B2 for 33.8 or 33.80 to 33.81
			or M1 for $\frac{[]}{80} = \cos 65$ oe seen (80)
6(b)	(187 or 187.1 to 187.2)	5	M2 for <i>their</i> 72.5 + 140cos35 oe
	$ \begin{pmatrix} 187 \text{ or } 187.1 \text{ to } 187.2 \\ -46.5 \text{ or } -46.49 \end{pmatrix} $		or M1 for $\frac{[]}{140} = \cos 35$ oe seen
			(140c) M2 for <i>their</i> 33.8 – 140sin35 oe
			or M1 for $\frac{[]}{140} = \sin 35$ oe seen
			(140
6(c)(i)	$(their\ 187)^2 + (their[-]\ 46.5)^2$	MI	
	193 or 192.6 to 192.9	B1	
	Palpacain		

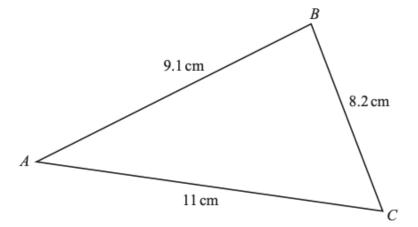

Usi	ing your answer to part (b), calculate	
(i)	the distance the ship sails from C to A ,	
		km [2]
(ii)	the bearing of A from C.	3
	*90	
	the bearing of A from C.	
	C3.	
	100	[3]
••		

(c) The ship sails directly back from C to A.


(b) Find \overrightarrow{AC} as a column vector with the components in kilometres.

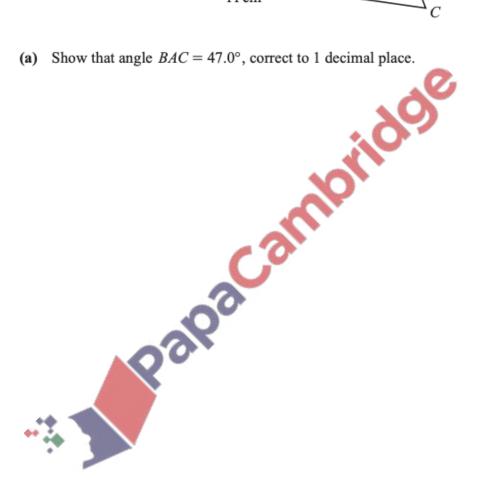
A ship sails 80 km on a bearing of 065° from A to B. It then sails 140 km on a bearing of 125° from B to C.

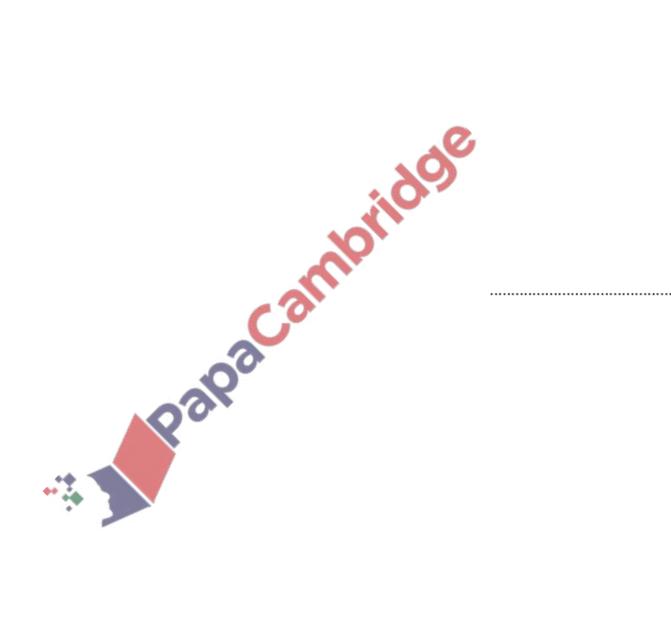



[4]

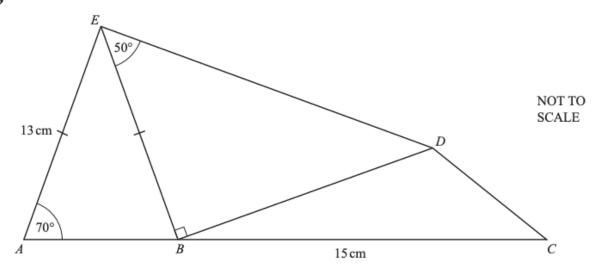
9(a)	$[\cos A] = \frac{11^2 + 9.1^2 - 8.2^2}{2 \times 11 \times 9.1}$	M2	M1 for $8.2^2 = 11^2 + 9.1^2 - 2 \times 11 \times 9.1 \times co$
	46.98 to 46.99	A1	
9(b)	$[\sin B =] \frac{11}{8.2} \times \sin 47.0$	M2	M1 for $\frac{8.2}{\sin 47} = \frac{11}{\sin B}$
	78.8 or 78.74 to 78.84	A1	If 0 scored then SC1 for correct answer for rule or other method
9(c)	36.6 or 36.54 to 36.60	2	M1 for $0.5 \times 9.1 \times 11 \times \sin 47.0$ or M1 for $0.5 \times 9.1 \times 8.2 \times \sin(their(\mathbf{b}))$ or M1 for $0.5 \times 8.2 \times 11 \times \sin(180 - 47.0)$
9(d)	6.65 or 6.66 or 6.647 to 6.656	2	M1 for $9.1 \times \sin 47.0$ oe or their(c) ÷ (0.5)
	Palpacali		

(c) Find the area of triangle ABC.

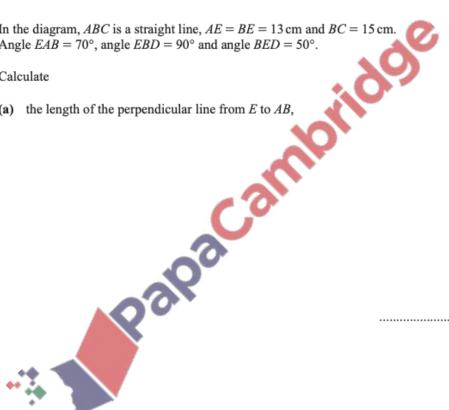

Papacambridge Apapacambridge (d) Find the length of the perpendicular from B to AC. cm [2] (b) Use the sine rule to find angle ABC.



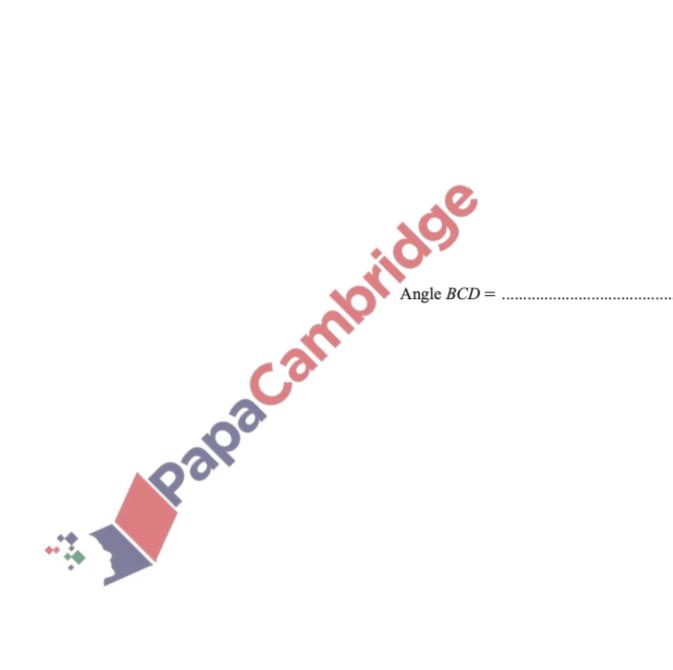
NOT TO **SCALE**

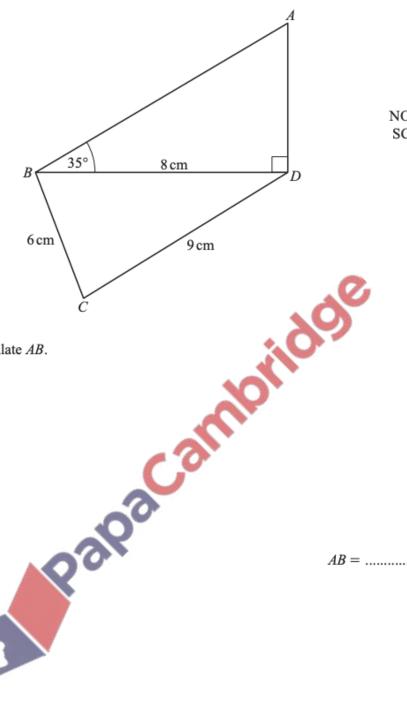

(a) Show that angle $BAC = 47.0^{\circ}$, correct to 1 decimal place.

(d) the area of the quadrilateral ACDE.


9

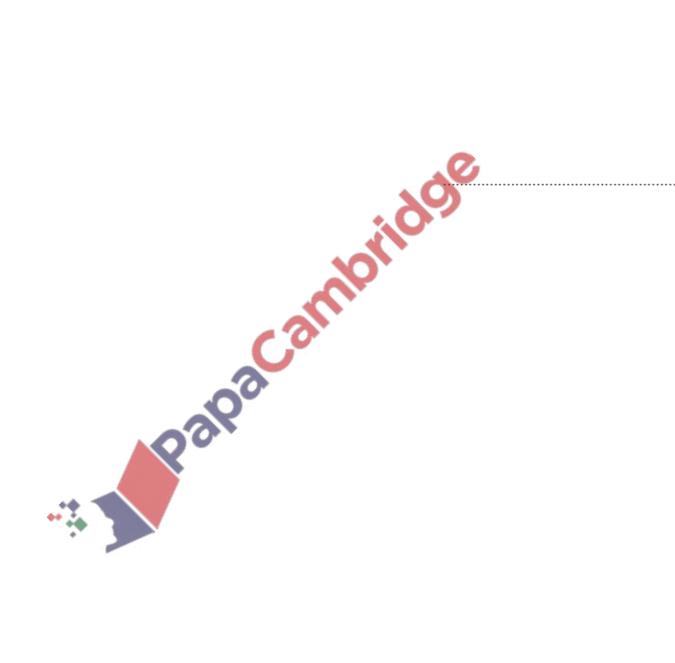
In the diagram, ABC is a straight line, AE = BE = 13 cm and BC = 15 cm. Angle $EAB = 70^{\circ}$, angle $EBD = 90^{\circ}$ and angle $BED = 50^{\circ}$.

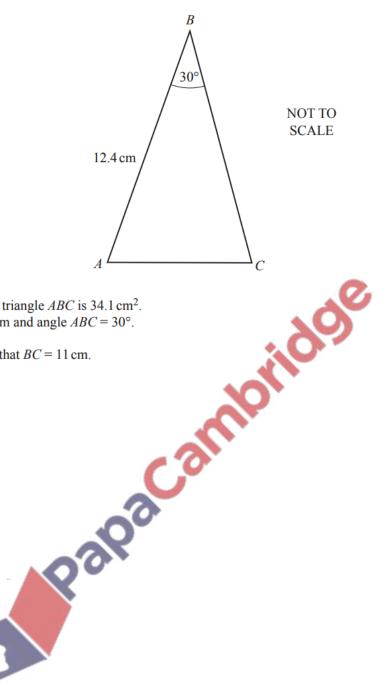

Calculate


(a) the length of the perpendicular line from E to AB,

..... cm [2]

(b) Calculate angle BCD.




NOT TO SCALE

(a) Calculate AB.

(d) Find the length of the perpendicular line from A to the line BC.

The area of triangle ABC is 34.1 cm^2 . $AB = 12.4 \,\mathrm{cm}$ and angle $ABC = 30^{\circ}$.

(a) Show that BC = 11 cm.

(a)	5.4[0] or 5.396	
(b)	20.4 or 20.38 nfww	
(c)	48[.0] or 48.1 or 48.04 to 48.12 cao	
	Call	
	200	
	Ro	
•		
7.0		
		(c) 20.4 or 20.38 nfww (d) 48[.0] or 48.1 or 48.04 to 48.12 cao

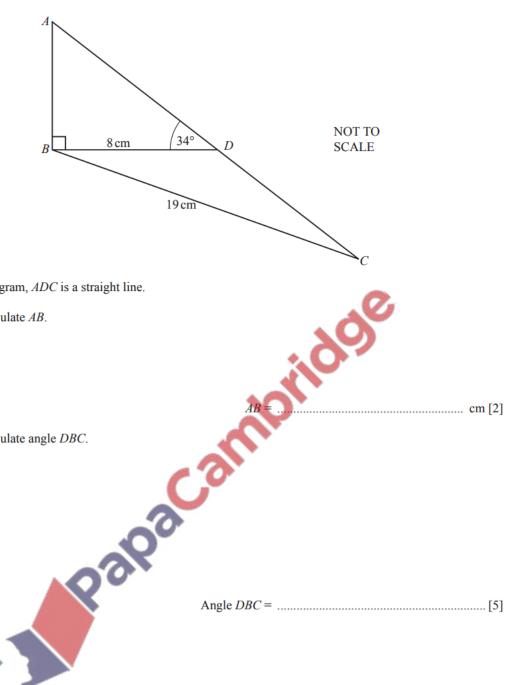
M1 for
$$\tan 34 = \frac{AB}{8}$$
 oe or better

B1 for angle $D = 146$

M2 for $[\sin C =]$ $\frac{8\sin(theirD)}{19}$

or M1 for $\frac{8}{\sin C} = \frac{19}{\sin(theirD)}$ oe

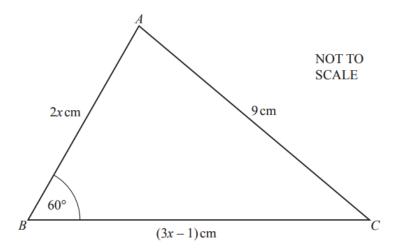
A1 for $[\text{angle } C =]$ 13.6 or 13.61 to

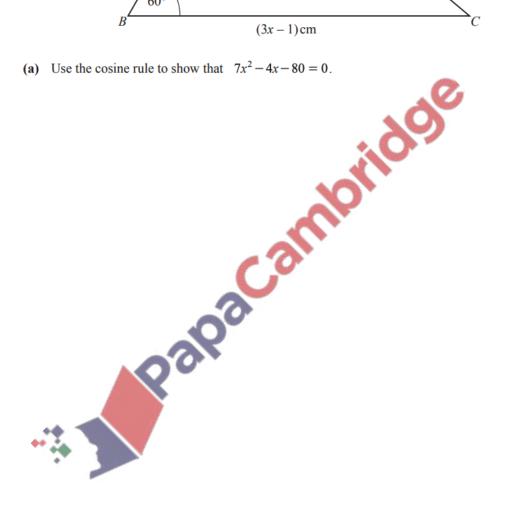

B1 for angle
$$A = 56$$

OR

M2 for
$$[\sin C =]$$
 $\frac{their AB \times \sin(their)}{19}$
or M1 for $\frac{their AB}{\sin C} = \frac{19}{\sin(theirA)}$

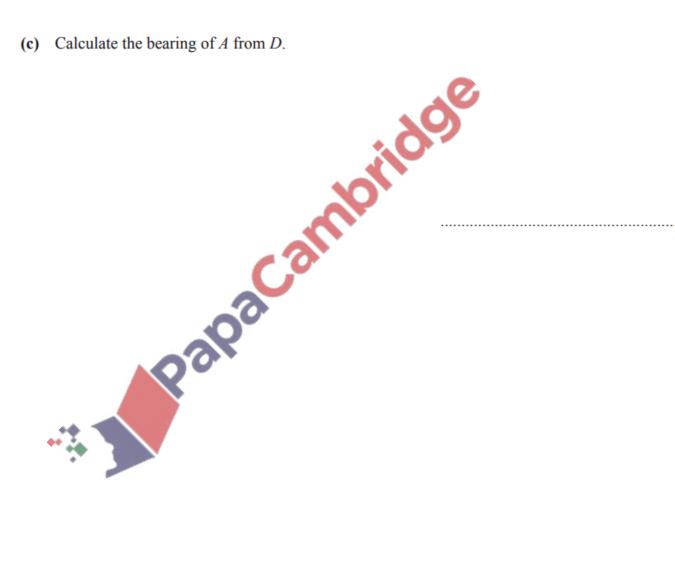
A1 for [angle
$$C = 13.6$$
 or 13.61 to

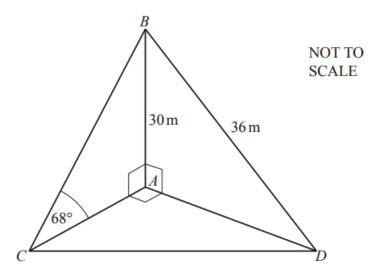

M1 for
$$0.5 \times their(a) \times 19 \times \sin(90 + their(b))$$


In the diagram, ADC is a straight line.

(a) Calculate AB.

(b) Calculate angle DBC.


(a) Use the cosine rule to show that $7x^2 - 4x - 80 = 0$.



[4]

(b) Calculate AC and show that it rounds to 12.1 m, correct to 3 significant figures.

(c) Calculate the bearing of A from D.

AB is a vertical tower of height 30 m. BC and BD are straight wires attached to B. A, C and D are on horizontal ground with C due west of D.

Angle $BCA = 68^{\circ}$ and BD = 36 m.

(a) Calculate AD. BC and BD are straight wires attached to B.

