

5-Aug-24

Objective: Complete iGCSE questions on vector calculations.

8/5/2024

8/5/2024

8/5/2024

12	$\mathbf{p} = \mathbf{a} + \mathbf{b}$ oe	3	B1 for each
	$\mathbf{q} = 2\mathbf{a} + \mathbf{b}$ oe		
	$\mathbf{r} = -2\mathbf{a} + \mathbf{b}$ oe		

8/5/2024

8/5/2024

8/5/2024

	Question	Answer	Mark	Part Marks
8	(a)	6 p – q	2	B1 for $\overrightarrow{XD} = -\mathbf{q}$ or M1 for $\overrightarrow{AD} = \overrightarrow{A}$
	(b)	$3\mathbf{p} + \mathbf{q}$ oe	2	M1 for $\overrightarrow{AC} = 9\mathbf{p}$ or $\overrightarrow{XC} = 3\mathbf{p}$ or \mathbf{c}
	(c)	$3\mathbf{p} - 2\mathbf{q}$ oe	3	M1 for $\overrightarrow{BD} = their$ (a) M1 for $\overrightarrow{CB} = \overrightarrow{CD} + \overrightarrow{DB}$ oe

$$10 p = \begin{bmatrix} 6 \\ 3 \end{bmatrix}$$

Find |p|, giving your answer in the form $3\sqrt{a}$.

8/5/2024

10	$3\sqrt{5}$	2 M1 for $\sqrt{6^2 + 3^2}$ or better or M1 for $a = 5$
		8/5/2024
		8/5/2024
(b) <i>O</i> is t	he point (0, 0).	
$\overrightarrow{OA} =$	$= \begin{pmatrix} 8 \\ 0 \end{pmatrix} \text{ and } \overrightarrow{OB} = \begin{pmatrix} 2 \\ 6 \end{pmatrix}.$	
Find the co	o-ordinates of N.	

$$\overrightarrow{OA} = \begin{pmatrix} 8 \\ 0 \end{pmatrix}$$
 and $\overrightarrow{OB} = \begin{pmatrix} 2 \\ 6 \end{pmatrix}$
Find the co-ordinates of N .

8/5/2024

8/5/2024

Question	Answer	Marks	Partial Marks
4(a)(i)	$\begin{pmatrix} -1.5\\1 \end{pmatrix}$ oe	1	
4(a)(ii)	$\begin{pmatrix} 10 \\ -1 \end{pmatrix}$	2	B1 for each
4(a)(iii)	$\sqrt{13}$ final answer	2	M1 for $(-3)^2 + 2^2$ oe soi by 3.61 or 3.605 $\sqrt{13}$ in working implies M1
4(b)	Correct B clearly indicated		B1 for vector $\begin{pmatrix} 1 \\ 5 \end{pmatrix}$ drawn not from A or $\begin{pmatrix} 1 \\ 5 \end{pmatrix}$ or correctly following through, from A , the incorrect vector seen. or either $\begin{pmatrix} -3 \\ 2 \end{pmatrix}$ or $\begin{pmatrix} 4 \\ 3 \end{pmatrix}$ correctly drawn on starts from A .

8/5/2024

8/5/2024

7(a)	(9, 4)	2	B1 for each co-ordinate
7(b)	3√5	3	M1 for $([-]6)^2 + 3^2$ A1 for $\sqrt{45}$

10(a)	$\binom{6}{3}$	1	
10(b)	6.71 or 6.708 or $\sqrt{45}$ oe	2	M1 for $(7-1)^2 + (5-2)^2$ oe

8/5/2024

	10(c)	$k-5=\sqrt{(their(\mathbf{b}))}$	$\frac{1}{10^2-3^2}$	M2	м	11 for $(k-5)^2 + (10-7)^2 = (their(\mathbf{b})^2)$
		* * * * * * * * * * * * * * * * * * * *				everse process scores 0.
		k-5=6		A1		
•			·	5.5	S	8/5/2024
				OL.		8/5/2024
			Call	, *		8/5/2024
	7(a)	(4)			3	B1 for each with arrows

7(a)	Vector $\begin{pmatrix} 4 \\ 2 \end{pmatrix}$ drawn Vector $\begin{pmatrix} 2 \\ 5 \end{pmatrix}$ drawn Vector $\begin{pmatrix} -4 \\ 0 \end{pmatrix}$ drawn	3	B1 for each with arrows If 0 scored SC1 for all three without or all incorrect arrows
7(b)	$[\mathbf{p} =] - 3\mathbf{b}$ oe	3	B1 for each
	$[\mathbf{q} =] 3\mathbf{a} + 3\mathbf{b} \text{ oe}$		
	$[\mathbf{r} =] 2\mathbf{b} - \mathbf{a} \text{ oe}$		

10(a)	$\begin{pmatrix} 0 \\ 32 \end{pmatrix}$	2	B1 for $\binom{0}{k}$ or $\binom{k}{32}$
10(b)	10	2	M1 for $6^2 + 8^2$ soi by 100

8/5/2024

3 A is the point (1, 5) and B is the point (6, 2).

Find the column vector \overrightarrow{AB} .

$$\mathbf{p} = \begin{pmatrix} 3 \\ -1 \end{pmatrix} \qquad \mathbf{q} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

(a) Find p+q.

(b) A is the point (2, 7).

The point A is translated to the point B by the vector $\mathbf{p} + \mathbf{q}$.

Find the coordinates of B.

1 1110	the coolumntes of B.		
	•	200	(
	alpri		8/5/2024
2(a)	$\begin{pmatrix} 4 \\ -3 \end{pmatrix}$	1	
2(b)	(6, 4)	2	FT their(a) B1 for each coordinate

8 (a) Work out
$$\begin{pmatrix} 12 \\ -5 \end{pmatrix} - 5 \begin{pmatrix} 4 \\ -1 \end{pmatrix}$$
.

(b) Work out the magnitude of $\begin{pmatrix} 3 \\ -4 \end{pmatrix}$.

8(a) $\begin{pmatrix} -8 \\ 0 \end{pmatrix}$ 2 B1 for each 8(b) 5 2 M1 for $3^2 + (-4)^2$ oe

$$\mathbf{a} = \begin{pmatrix} 6 \\ 8 \end{pmatrix} \qquad \mathbf{b} = \begin{pmatrix} 2 \\ -8 \end{pmatrix}$$

(a) Find a -3h

10

.....

(b) Vectors p, q, and r are drawn on this grid.

Write each of the vectors in terms of a and/or b.

p =	

7 The vectors a and b are shown on the grids.

(a) On the grid below, draw and label the following three vectors.

2**b**

2a+b

a-2b

10 The points A (1, 2) and B (7, 5) are shown on the diagram below.

(a) Write \overrightarrow{AB} as a column vector.

.....[2]

[3]

- Q is the point (3, 7) and $\overrightarrow{PQ} = \begin{pmatrix} -6 \\ 3 \end{pmatrix}$.
 - (a) Find the co-ordinates of P.

(b) Find $|\overrightarrow{PQ}|$. Give your answer in its simplest surd form.

(b)
$$\overrightarrow{AB} = \mathbf{p} + \mathbf{q}$$

Mark and label point B on the grid.

- 4 $\mathbf{p} = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$ and $\mathbf{q} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$
 - (a) Find
 - (i) the column vector $\frac{1}{2}$ **p**,
 - (ii) the column vector $\mathbf{q} 2\mathbf{p}$,
 - (iii) |p|, leaving your answer in surd form.

11(a)(i)	$-\mathbf{a} + \mathbf{b}$ oe	1	
11(a)(ii)	$-\frac{1}{4}\mathbf{a} + \frac{1}{4}\mathbf{b} \text{ oe}$	1	FT their (i)
11(a)(iii)	$\frac{3}{4}\mathbf{a} + \frac{1}{4}\mathbf{b} \text{ oe}$	2	B1 for correct unsimplified answer of route
11(b)	(6.5, 1.5)	3	FT their (a)(iii)
			B2 for $\binom{6.5}{1.5}$ or M1 for $\frac{3}{4} \times \binom{8}{0} + \frac{1}{4} \times \binom{2}{6}$
		190	OR B2 for $(5, 3)$ at M or $[\overrightarrow{OM} =] \begin{pmatrix} 5 \\ 3 \end{pmatrix}$
			or B1 for $(k, 3)$ or $(5, k)$ at M or $[\overrightarrow{OM} =] \begin{pmatrix} k \\ 3 \end{pmatrix}$ or $\begin{pmatrix} 5 \\ k \end{pmatrix}$
	Palpacai		

NOT TO **SCALE**

In the diagram, $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$. M is the midpoint of AB and N is the midpoint of AM.

- Palpacamido (a) Find each of these vectors in terms of a and b. Give each vector in its simplest form.
 - (i) \overrightarrow{AB}

 \overrightarrow{AN} (ii)

$$\overrightarrow{AN} =$$

(iii)
$$\overrightarrow{ON}$$

(b) \overrightarrow{DC} ,

(c) \overrightarrow{CB} .

$$AX = \frac{2}{3}AC$$
 and $AD = \frac{1}{2}AB$

$$\overrightarrow{AX} = 6\mathbf{p}$$
 and $\overrightarrow{DX} = \mathbf{q}$.

Write the vectors \mathbf{p} , \mathbf{q} and \mathbf{r} in terms of \mathbf{a} and \mathbf{b} .

