

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

PHYSICS 0625/43

Paper 4 Extended Theory

May/June 2017

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

® IGCSE is a registered trademark.

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

Question	Answer	Marks
1(a)	force and impulse underlined	B1
1(b)(i)	$(v =) at OR 2.2 \times 3.0$	C1
	6.6 m/s	A1
1(b)(ii)	3.3 m/s	B1
1(c)	curve/line starts at origin	B1
	initial gradient zero OR curve passing through (3.0, 9.9)	B1
	gradient increasing (with time)	B1
	Total:	7

Question	Answer	Marks
2(a)	(momentum =)mass × velocity	B1
2(b)(i)	$(p =)3.2 \times 4.0$	C1
	13 kg m/s	A1
2(b)(ii)	momentum conserved	C1
	12.8 – (3.2 × 1.5) OR 12.8 – 4.8 OR 8.0 OR 8.0 ÷ 1.6	C1
	5.0 m/s	A1
2(c)	$(F =)\frac{\Delta p}{\Delta t}$ or $8.0 \div 0.050$	C1
	160 N	A1
2(d)	internal energy (of blocks) increase OR thermal energy/sound energy (lost/produced at collision)	B1
	Total:	9

Question	Answer	Marks
3(a)	$(\rho =)\frac{m}{V}$ OR 180 ÷ 210 OR 0.18 ÷ 210	C1
	0.86 g/cm ³	A 1
3(b)	floats OR words to the same effect	B1
	density of wood is less than density of liquid	B1
	Total:	4
Question	Answer	Marks
4	$F_1 d_1 = F_2 d_2 \text{ OR } (F_2 =) \frac{F_1 d_1}{d_2}$	C1
	OR $200 \times 22 \div 8.0$	
	550 (N) or 200 × 22 ÷ 8.0	C1
	$(p =)\frac{F}{A} \text{ OR } 550 \div 0.00050$	C1
	OR $200 \times 22 \div (8.0 \times 0.00050)$	
	1.1 × 10 ⁶ Pa	A1
	Total:	4

Question	Answer	Marks
5(a)	white kit cooler OR black kit warmer	M1
	white poor absorber/good reflector of (IR)radiation/heat/thermal energy OR v.v. for black	A1
5(b)(i)	any two pairs from: more/less wind; dries quicker/slower temperature increases/decreases/sunnier/cloudier; dries quicker/slower stops/starts raining; dries quicker/slower less/more humid; dries quicker/slower	B2
5(b)(ii)	molecules with most (kinetic) energy (escape) OR water cools	B1
	escape liquid/break intermolecular bonds / molecules enter air / evaporate / become vapour	B1
	Total:	6
Question	Answer	Marks
6(a)	molecules/they move/collide	B1
	molecules/they move/collide with walls	B1
	change of momentum OR force on area	B1
6(b)(i)	pV = constant OR $p_1V_1 = p_2V_2$	B1
6(b)(ii)1	100 (kPa) OR 1.0 × 10 ⁵ (Pa)	M1
	Pa OR kPa	A1
6(b)(ii)2	(p =)50 (kPa)	C1
	3700 m < p < 3900 m	A1
	Total:	8

Question	Answer	Marks
7(a)(i)	$(v =)f\lambda \text{ or } 6000 \times 0.25$	C1
	1500 m/s	A1
7(a)(ii)	$300 \mathrm{m/s} \leqslant c \leqslant 360 \mathrm{m/s}$	B1
7(a)(iii)	less and travels less far in same/periodic time	B1
7(b)	vibration/oscillation	B1
	vibration/oscillation parallel to direction of travel OR compressions and rarefactions	B1
7(c)(i)	inversely related OR the wider the gap, the less the diffraction OR v.v.	B1
7(c)(ii)	directly related OR greater wavelength, greater diffraction OR v.v.	B1
	Total:	8

Question	Answer	Marks
8(a)	OP/it is along the normal/at 90° (to the curved surface)	B1
8(b)(i)	$\sin i / \sin r = n$	C1
	$\sin r / \sin 30(^{\circ}) = 1.5 \text{ OR } \sin r = 1.5 \times \sin 30(^{\circ})$	C1
	49°	A1
8(b)(ii)	ray bends away from the normal c.a.o.	B1
8(c)	angle (from normal) of refraction increases	B1
	refracted ray travels along boundary OR reflected ray becomes brighter OR refracted ray becomes dimmer	B1
	light reflects back into glass (with $i = r$)	B1
	Total:	8

Question	Answer	Marks
9(a)	$(I =) \frac{P}{V} \text{ OR } 24 \div 6.0 \text{ OR } 4.0 \text{ (A) OR } (R =) \frac{V}{I}$	C1
	6.0 ÷ 4.0	C1
	1.5 Ω	A 1
9(b)(i)	6.0 V	B1
9(b)(ii)	1.5 Ω	B1
9(b)(iii)	$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} \text{ OR } 1 \div 1.5 = \frac{1}{R_1} + \frac{1}{R_2} \text{ OR } 1 \div 1.5 = \frac{2}{R}$	C1
	3.0 (Ω)	A1
9(c)	resistance of circuit/parallel pair increases	B1
	current (in lamp) decreases OR less p.d. across lamp	B1
	Total:	9

Question	Answer	Marks
10(a)(i)	magnetic field mentioned	B1
	changing (magnetic) field in core/Q	B1
	induction in Q	В1
10(a)(ii)	(iron is) magnetic and temporary magnetic	B1
10(b)(i)	$(V_S =)V_P \times N_S \div N_P \text{ OR } 4.0 \times 340 \div 200$	C1
	6.8 V	A 1
10(b)(ii)	$(I_P =)I_S V_S / V_P OR 3.5 \times 6.8 \div 4.0$	C1
	6.0 A	A1
10(c)	less energy wasted (in cables)	B1
	cheaper and one from: thinner cables fewer pylons fewer power stations/less fuel required	B1
	Total:	10

Question	Answer	Marks
11(a)(i)	produces a narrow beam of γ -rays OR absorb γ -rays that are not on path shown	B1
11(a)(ii)	no change	B1
	γ-rays not deflected	B1
	γ-rays are electromagnetic radiation/uncharged OR not deflected by magnetic field	B1
11(b)	(ionising effect of) α -particles greater than β -particles and β -particles greater than γ -rays	B1
	any two from: mass α > mass β > mass γ charge α > charge β > charge γ speed γ > speed β > speed α	B2
	Tot	al: 7

© UCLES 2017 Page 10 of 10