CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2013 series

0653 COMBINED SCIENCE

0653/33

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2)	Mark Scheme	Book	
				IGCSE – May/June 2013	0653	S.
1	(a)	(i)	sum	of protons and neutrons is four/nucleon number is sons and neutrons;	sum of	ana Cambridge
		(ii)	prote	bers of protons and electrons are the same; ons positive electrons negative; oges (of protons and electrons) cancel;		[max 2]
	(b)		elec elec	ns share electrons; tron pair (is shared); tron pair lies between nuclei/shields nuclear repulsio	on;	[max 2]
		(ii)		um (atoms) inert/stable; rence to complete (outer) shell;		[max 1]
	(c)	(c) pop (test) indicates hydrogen (given off); zinc displaces hydrogen/reacts with HC/ to produce hydrogen; zinc more reactive than hydrogen; silver less reactive than hydrogen (so no reaction);			n;	[max 3]
		(allo	ow m	ax 1 if only response is <i>zinc is more reactive than si</i>	lver)	[Total: 9]
2	(a)	(i)		ance = speed \times time; $100 \times 0.2/2 = 160 \text{m}$;		[2]
		(ii)		quency =) velocity ÷ wavelength; uency = 1600/0.25 = 6400 Hz;		[2]
	(b)	(i)	no C ref. t	that fossil fuels are conserved; CO ₂ /greenhouse gas emissions; to global warming/reduced consequence of global wemissions causing acid rain;	varming described;	[max 2]
		(ii)	trans trans trans trans	sfer of KE to PE as water moves up chamber; sfer of KE to air inside chamber; sfer of KE of air to KE of (rotation of) turbine; sfer of KE of turbine to KE of generator; sfer of KE of generator to electrical energy; w strong implication of these transfers)		[max 2]
	(c)	(i)	sea	water;		[1]
	. ,	(ii)		poration;		[1]
		` ,	'			[Total: 10]
						•

Page 3	Mark Scheme	Syllabus
	IGCSF - May/June 2013	0653

3 (a) combustion/burning, of (fossil) fuels/coal; sulfur dioxide produced; (which) reacts with/dissolves in, water (in atmosphere);

(b) eutrophication;

increased growth of algae;

blocks light to plants deeper down;

algae/plants, die;

bacteria feed on them/bacteria population increases;

bacteria use oxygen;

removal of oxygen kills fish;

[max 3]

(c) reference to (less) photosynthesis;

so less carbon dioxide removed;

trees burned;

producing carbon dioxide;

[max 2]

[Total: 7]

(a) chain of three carbon atoms joined by single bonds;

eight hydrogen atoms correctly bonded to carbon;

[2]

e.g. Н Н Н

(b) boiling range/point is lower at **B** than **C**;

because (mean) intermolecular attraction lower;

so less (heat) energy needed to separate molecules/boil the mixture;

intermolecular attraction is lower for smaller molecules:

[max 3]

[1]

[2]

(c) (i) too reactive/compounds much more stable;

(ii) sodium atoms lose one electron/outer shell electron/become 2.8;

chlorine atoms gain one electron/complete their outer shell become 2.8.8;

[Total: 8]

	Page 4	1	Mark Scheme	Syllabus	2
	1 490		IGCSE – May/June 2013	0653	18
5	(a) (i)	calc			and Cambridge
	(ii)	wate	er;		
	(iii)		more calcium; teeth/bones;		[2]
	(iv)	calc can	ium; be absorbed as it is/idea that it consists of small pa	rticles;	[2]
	(b) (i)	ref.	peed up the process; enzymes; of enzymes working faster at this temperature;		[max 2]
	(ii)	slow	vs enzymes working/to keep it fresh;		[1]
	(iii)	acid	produced;		[1]
					[Total: 10]
6	(a) (i)	Y 's \	k = force × distance; work is 100 J and X 's work is 120 J; X does the most work)		[2]
	(ii)	refe	rker X) rence to power = work/time; worker X uses more power)		[1]
	(iii)	(den = 50	nsity =) mass/volume; 000/5500 = 0.91 (g/cm³);		[2]
	(b) (i)	work 288			[2]
	(ii)	240	s;		[1]
	(iii)		C (no mark) on graph goes down so speed was changing/owtte		[1]
		(ans	swer must show that the graph has been used)		[Total: 9]

Page 5	Mark Scheme	Syllabus	
-	IGCSE – May/June 2013	0653	

7 (a) carbon dioxide;

limewater reacts with carbon dioxide/limewater is the test reagent for CO₂;

(b) (i) X shown clearly on graph at 2 min;

[1]

(ii) decrease of;

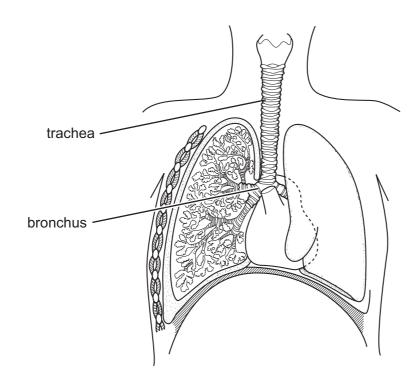
7°C;

[2]

(-7°C scores both)

(iii) (reaction is) endothermic/temperature (of the mixture) decreases; thermal/heat/kinetic energy converted to (internal) chemical energy;

[2]


(c) sodium ion is Na⁺; charges of ions must balance; so hydrogencarbonate is HCO₃;

[3]

[Total: 10]

Page 6	Mark Scheme	Syllabus
	IGCSE - May/June 2013	0653

8 (a)

[2]

(b) large surface area; good blood supply; thin wall; moist surface;

[max 2]

(c) mucus traps, bacteria/pathogens/dust/particles; cilia sweep mucus, upwards/away from lungs/to throat;

[2]

(d) (i) 3, 4 and 5;

[1]

(ii) ref. to bronchitis/inflammation in airways;
(because) more mucus produced/damaged cilia unable to remove mucus (as efficiently);
in which bacteria breed;
ref. to named smoking-induced cancer e.g. lung. throat:

ref. to named smoking-induced cancer e.g. lung, throat; ref. to emphysema/breakdown of alveolar walls;

so gas exchange less efficient/difficult to get enough oxygen;

[max 3]

(allow other correct health-related conditions or consequences of smoking)

[Total: 10]

www.xtrapapers.con

D 7	M =l. O = l. = =	O. Halana	
Page 7	Mark Scheme	Syllabus \	ι.
	IGCSE – May/June 2013	0653	

9 (a) All symbols correct;

Ammeter in series and voltmeter in parallel;

Everything else correct;

(b)
$$V = IR;$$

 $R = 0.3/0.5 = 0.6 \Omega;$

[2]

[2]

(c) Metals contract when cold;

If cables put up tight in summer/when warm, cables could snap or pylons could be damaged when temperature falls/in winter;

[Total: 7]