

- The polynomial $x^4 2x^3 2x^2 + a$ is denoted by f(x). It is given that f(x) is divisible by $x^2 4x + 4$. 4
 - (i) Find the value of a.
 - (ii) When a has this value, show that f(x) is never negative.

[4]

[3]

- Relative to the origin O, the point A has position vector given by $\overrightarrow{OA} = \mathbf{i} + 2\mathbf{j} + 4\mathbf{k}$. The line l has equation $\mathbf{r} = 9\mathbf{i} - \mathbf{j} + 8\mathbf{k} + \mu(3\mathbf{i} - \mathbf{j} + 2\mathbf{k}).$
 - (i) Find the position vector of the foot of the perpendicular from A to l. Hence find the position vector of the reflection of A in l. [5]

9709_s17_	m	32.pdf	
	-		

	3103_311_1113 <u>_</u> 32.pa1	ja.
9(i)	EITHER: Find \overline{AP} for a general point P on l with parameter λ , e.g. $(8 + 3\lambda, -3 - \lambda, 4 + 2\lambda)$	
	Equate scalar product of \overline{AP} and direction vector of l to zero and solve for λ	
	Obtain $\lambda = -\frac{5}{2}$ and foot of perpendicular $\frac{3}{2}\mathbf{i} + \frac{3}{2}\mathbf{j} + 3\mathbf{k}$	
	Carry out a complete method for finding the position vector of the reflection of A in I	
	Obtain answer $2\mathbf{i} + \mathbf{j} + 2\mathbf{k}$	

10 The points A and B have position vectors, relative to the origin O, given by

$$\overrightarrow{OA} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$$
 and $\overrightarrow{OB} = 2\mathbf{i} + \mathbf{j} + 3\mathbf{k}$.

The line l has vector equation

$$\mathbf{r} = (1 - 2t)\mathbf{i} + (5 + t)\mathbf{j} + (2 - t)\mathbf{k}.$$

- (i) Show that l does not intersect the line passing through A and B.
- (ii) The point P lies on l and is such that angle PAB is equal to 60° . Given that the position vector of P is $(1-2t)\mathbf{i} + (5+t)\mathbf{j} + (2-t)\mathbf{k}$, show that $3t^2 + 7t + 2 = 0$. Hence find the only possible position vector of P.

[4]

9709_s08_ms_3.pdf

- (i) State a vector equation for the line through A and B, e.g. r = i + 2j + 3k + s(i j)
 Equate at least two pairs of components of general points on AB and l, and solve for s or for t
 Obtain correct answer for s or t, e.g. s = -6, 2, -2 when t = 3, -1, -1 respectively
 Verify that all three component equations are not satisfied
 - (ii) State or imply a direction vector for AP has components (-2t, 3+t, -1-t), or equivalent B1

State or imply cos 60° equals $\frac{\overrightarrow{AP}.\overrightarrow{AB}}{|\overrightarrow{AP}|.|\overrightarrow{AB}|}$ M1*

Carry out correct processes for expanding the scalar product and expressing the product of the moduli in terms of t, in order to obtain an equation in t in any form

Obtain the given equation $3t^2 + 7t + 2 = 0$ correctly

Solve the quadratic and use a root to find a position vector for PObtain position vector $5\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}$ from t = -2, having rejected the root $t = -\frac{1}{3}$ for a valid reason

A1 [6]

(i) Show that
$$\overrightarrow{OP} = (1 + 2\lambda)\mathbf{i} + (2 + 2\lambda)\mathbf{j} + (2 - 2\lambda)\mathbf{k}$$
. [2]

- (ii) By equating expressions for $\cos AOP$ and $\cos BOP$ in terms of λ , find the value of λ for which OP bisects the angle AOB.
- (iii) When λ has this value, verify that AP : PB = OA : OB. [1]

9709_w11_ms_32.pdf

- 7 (i) Use a correct method to express \overrightarrow{OP} in terms of λ M1
 Obtain the given answer A1 [2]
 - (ii) EITHER: Use correct method to express scalar product of \overrightarrow{OA} and \overrightarrow{OP} , or \overrightarrow{OB} and \overrightarrow{OP} in terms of λ M1

 Using the correct method for the moduli, divide scalar products by products of moduli and express $\cos AOP = \cos BOP$ in terms of λ , or in terms of λ and OP M1*

 OR1: Use correct method to express $OA^2 + OP^2 AP^2$, or $OB^2 + OP^2 BP^2$ in terms of λ M1

 Using the correct method for the moduli, divide each expression by twice the product of the relevant moduli and express $\cos AOP = \cos BOP$ in terms of λ , or λ and OP M1*

Obtain a correct equation in any form, e.g. $\frac{9+2\lambda}{3\sqrt{(9+4\lambda+12\lambda^2)}} = \frac{11+14\lambda}{5\sqrt{(9+4\lambda+12\lambda^2)}}$ A1

Solve for λ Obtain $\lambda = \frac{3}{8}$ A1 [5]

[SR: The M1* can also be earned by equating $\cos AOP$ or $\cos BOP$ to a sound attempt at $\cos \frac{1}{2} AOB$ and obtaining an equation in λ . The exact value of the cosine is $\sqrt{(13/15)}$, but accept non-exact working giving a value of λ which rounds to 0.375, provided the

spurious negative root of the quadratic in λ is rejected.] [SR: Allow a solution reaching $\lambda = \frac{3}{8}$ after cancelling identical incorrect expressions for

OP to score 4/5. The marking will run M1M1A0M1A1, or M1M1A1M1A0 in such cases.]

(iii) Verify the given statement correctly B1 [1]

5

The diagram shows the curve

$$y = 8\sin\frac{1}{2}x - \tan\frac{1}{2}x$$

for $0 \le x < \pi$. The x-coordinate of the maximum point is α and the shaded region is enclosed by the curve and the lines $x = \alpha$ and y = 0.

(i) Show that
$$\alpha = \frac{2}{3}\pi$$
.

9709_s12_ms_31.pdf

5 (i) Differentiate to obtain
$$4\cos\frac{1}{2}x - \frac{1}{2}\sec^2\frac{1}{2}x$$
 B1

Equate to zero and find value of
$$\cos \frac{1}{2}x$$
 M1

Obtain
$$\cos \frac{1}{2}x = \frac{1}{2}$$
 and confirm $\alpha = \frac{2}{3}\pi$

(ii) Integrate to obtain
$$-16\cos\frac{1}{2}x$$
... B1

...
$$+2\ln\cos\frac{1}{2}x$$
 or equivalent B1

Using limits 0 and
$$\frac{2}{3}\pi$$
 in $a\cos\frac{1}{2}x + b\ln\cos\frac{1}{2}x$

Obtain
$$8 + 2 \ln \frac{1}{2}$$
 or exact equivalent A1 [4]

- (a) The complex numbers u and w satisfy the equations 10
 - u w = 4i and uw = 5.

Solve the equations for u and w, giving all answers in the form x + iy, where x and y are real.

[5]

- **(b)** (i) On a sketch of an Argand diagram, shade the region whose points represent complex numbers satisfying the inequalities $|z-2+2i| \le 2$, arg $z \le -\frac{1}{4}\pi$ and Re $z \ge 1$, where Re z denotes the real part of z. [5]
 - (ii) Calculate the greatest possible value of Re z for points lying in the shaded region. [1]

9709_s12_ms_33.pdf

10	()	EITHER RULL AND ALL AN	2.61	
10	(a)	EITHER: Eliminate u or w and obtain an equation in w or in u	M1	
		Obtain a quadratic in u or w, e.g. $u^2 - 4iu - 5 = 0$ or $w^2 + 4iw - 5 = 0$	A1	
		Solve a 3-term quadratic for u or for w	M1	
		OR1: Having squared the first equation, eliminate u or w and obtain an equation in w		
		or u	M1	
		Obtain a 2-term quadratic in u or w , e.g. $u^2 = -3 + 4i$	A1	
		Solve a 2-term quadratic for u or for w	M1	
		OR2: Using $u = a + ib$, $w = c + id$, equate real and imaginary parts and obtain 4		
		equations in a , b , c and d	M1	
		Obtain 4 correct equations	A1	
		Solve for a and b , or for c and d	M1	
		Obtain answer $u = 1 + 2i$, $w = 1 - 2i$	A1	
		Obtain answer $u = -1 + 2i$, $w = -1 - 2i$ and no other	A1	[5]
	(b)	(i) Show point representing 2 – 2i in relatively correct position	B1	
		Show a circle with centre 2 - 2i and radius 2	R1√	

- Show a circle with centre 2-2i and radius 2 BIA
 - Show line for arg $z = -\frac{1}{4}\pi$ B1
 - Show line for Re z = 1**B**1
 - Shade the relevant region B1 [5]
 - (ii) State answer $2 + \sqrt{2}$, or equivalent (accept 3.41) [1] B1

8

The diagram shows the curve $y = x \cos \frac{1}{2}x$ for $0 \le x \le \pi$.

(i) Find
$$\frac{dy}{dx}$$
 and show that $4\frac{d^2y}{dx^2} + y + 4\sin\frac{1}{2}x = 0$. [5]

(ii) Find the exact value of the area of the region enclosed by this part of the curve and the x-axis.

[5]

9709_s14_ms_32.pdf

(i)	Use product rule	M1	
	Obtain derivative in any correct form	A1	
	Differentiate first derivative using the product rule	M1	
	Obtain second derivative in any correct form, e.g. $-\frac{1}{2}\sin\frac{1}{2}x - \frac{1}{4}x\cos\frac{1}{2}x - \frac{1}{2}\sin\frac{1}{2}x$	A1	
	Verify the given statement	A1	5
(ii)	Integrate and reach $kx \sin \frac{1}{2}x + l \int \sin \frac{1}{2}x dx$	M1*	
	Obtain $2x \sin \frac{1}{2}x - 2 \int \sin \frac{1}{2}x dx$, or equivalent	A1	
	Obtain indefinite integral $2x \sin \frac{1}{2}x + 4 \cos \frac{1}{2}x$	A1	
	Use correct limits $x = 0$, $x = \pi$ correctly	M1(dep*)	
	Obtain answer $2\pi - 4$, or exact equivalent	A1	5
	(i) (ii)	 Obtain derivative in any correct form Differentiate first derivative using the product rule Obtain second derivative in any correct form, e.g ½ sin ½ x - ½ x cos ½ x - ½ sin ½ x Verify the given statement (ii) Integrate and reach kx sin ½ x + l ∫ sin ½ x dx Obtain 2x sin ½ x - 2 ∫ sin ½ x dx, or equivalent Obtain indefinite integral 2x sin ½ x + 4 cos ½ x Use correct limits x = 0, x = π correctly 	Obtain derivative in any correct form Differentiate first derivative using the product rule Obtain second derivative in any correct form, e.g. $-\frac{1}{2}\sin\frac{1}{2}x - \frac{1}{4}x\cos\frac{1}{2}x - \frac{1}{2}\sin\frac{1}{2}x$ A1 Verify the given statement A1 (ii) Integrate and reach $kx\sin\frac{1}{2}x + l\int\sin\frac{1}{2}xdx$ M1* Obtain $2x\sin\frac{1}{2}x - 2\int\sin\frac{1}{2}xdx$, or equivalent A1 Obtain indefinite integral $2x\sin\frac{1}{2}x + 4\cos\frac{1}{2}x$ A1 Use correct limits $x = 0$, $x = \pi$ correctly M1(dep*)

- 7 (a) It is given that $-1 + (\sqrt{5})i$ is a root of the equation $z^3 + 2z + a = 0$, where a is real. Showing your working, find the value of a, and write down the other complex root of this equation. [4]
 - (b) The complex number w has modulus 1 and argument 2θ radians. Show that $\frac{w-1}{w+1} = i \tan \theta$. [4]

9709_s14_ms_32.pdf

7	(a)	EITHER:	Substitute and expand $(-1 + \sqrt{5} i)^3$ completely	M1	
			Use $i^2 = -1$ correctly at least once	M1	
			Obtain $a = -12$	A1	
			State that the other complex root is $-1 = \sqrt{5}$ i	B1	
		OR1:	State that the other complex root is $-1 - \sqrt{5}$ i	B1	
			State the quadratic factor $z^2 + 2z + 6$	B1	
			Divide the cubic by a 3-term quadratic, equate remainder to zero and solve for		
			a or, using a 3-term quadratic, factorise the cubic and determine a	M1	
			Obtain $a = -12$	A1	
		OR2:	State that the other complex root is $-1 - \sqrt{5i}$	B1	
			State or show the third root is 2	B1	
			Use a valid method to determine a	M1	
		<u> </u>	Obtain $a = -12$	A1	
		OR3:	Substitute and use De Moivre to cube $\sqrt{6}$ cis(114.1°), or equivalent	M1	
			Find the real and imaginary parts of the expression	M1	
			Obtain $a = -12$	A1	
			State that the other complex root is $-1 - \sqrt{5i}$	B1	4

- 5 (i) The polynomial f(x) is of the form $(x-2)^2g(x)$, where g(x) is another polynomial. Show that (x-2) is a factor of f'(x). [2]
 - (ii) The polynomial $x^5 + ax^4 + 3x^3 + bx^2 + a$, where a and b are constants, has a factor $(x 2)^2$. Using the factor theorem and the result of part (i), or otherwise, find the values of a and b. [5]

9709_s14_ms_32.pdf

(i)	Differentia	ate $f(x)$ and obtain $f'(x) = (x-2)^2 g'(x) + 2(x-2)g(x)$	B1	
	Conclude	that $(x-2)$ is a factor of $f'(x)$	B1	2
(ii)	EITHER:	e.g. $32 + 16a + 24 + 4b + a = 0$	B1	
		Differentiate polynomial, substitute $x = 2$ and equate to zero or divid $(x-2)$ and equate constant remainder to zero	e by M1*	
		Obtain a correct equation, e.g. $80 + 32a + 36 + 4b = 0$	A1	
	OR1:	Identify given polynomial with $(x-2)^2(x^3+Ax^2+Bx+C)$ and obtain an		
		equation in a and/or b	M1*	
		Obtain a correct equation, e.g. $\frac{1}{4}a - 4(4+a) + 4 = 3$	A1	
	4	Obtain a second correct equation, e.g. $-\frac{3}{4}a + 4(4+a) = b$	A1	
	OR2:	Divide given polynomial by $(x-2)^2$ and obtain an equation in a and b	M1*	
		Obtain a correct equation, e.g. $29 + 8a + b + 0$	A1	
		Obtain a second correct equation, e.g. $176 + 47a + 4b = 0$	A1	
	Solve for	a or for b	M1(dep*)	
	Obtain $a =$	= -4 and b = 3	A1	5
		Conclude (ii) EITHER: OR1: OR2:	Conclude that $(x-2)$ is a factor of $f'(x)$ (ii) EITHER: Substitute $x = 2$, equate to zero and state a correct equation, e.g. $32 + 16a + 24 + 4b + a = 0$ Differentiate polynomial, substitute $x = 2$ and equate to zero or divid $(x-2)$ and equate constant remainder to zero Obtain a correct equation, e.g. $80 + 32a + 36 + 4b = 0$ OR1: Identify given polynomial with $(x-2)^2(x^3 + Ax^2 + Bx + C)$ and obtain an equation in a and/or b Obtain a correct equation, e.g. $\frac{1}{4}a - 4(4+a) + 4 = 3$ Obtain a second correct equation, e.g. $-\frac{3}{4}a + 4(4+a) = b$ OR2: Divide given polynomial by $(x-2)^2$ and obtain an equation in a and b Obtain a correct equation, e.g. $29 + 8a + b + 0$	Conclude that $(x-2)$ is a factor of $f'(x)$ B1 (ii) EITHER: Substitute $x = 2$, equate to zero and state a correct equation, e.g. $32 + 16a + 24 + 4b + a = 0$ B1 Differentiate polynomial, substitute $x = 2$ and equate to zero or divide by $(x-2)$ and equate constant remainder to zero M1* Obtain a correct equation, e.g. $80 + 32a + 36 + 4b = 0$ A1 OR1: Identify given polynomial with $(x-2)^2(x^3 + Ax^2 + Bx + C)$ and obtain an equation in a and/or b M1* Obtain a correct equation, e.g. $\frac{1}{4}a - 4(4+a) + 4 = 3$ A1 Obtain a second correct equation, e.g. $-\frac{3}{4}a + 4(4+a) = b$ A1 OR2: Divide given polynomial by $(x-2)^2$ and obtain an equation in a and b M1* Obtain a correct equation, e.g. $29 + 8a + b + 0$ A1 Obtain a second correct equation, e.g. $176 + 47a + 4b = 0$ A1 Solve for a or for b M1(dep*)

$$|x + 2a| > 3|x - a|$$

1	Find th	ne set of values of x satisfying the inequality		
	where	x + 2a > 3 x - a , a is a positive constant.		[4]
		9709_s14_ms_32.pdf		
1	EITHE	R: State or imply non-modular inequality $(x+2a)^2 > (3(x-a))^2$, or corresponding		
		quadratic equation, or pair of linear equations $(x + 2a) = \pm 3(x - a)$	В1	
		Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations		
		for x	M1	
		Obtain critical values $x = \frac{1}{4}a$ and $x = \frac{5}{2}a$	A1	
		State answer $\frac{1}{4}a < x < \frac{5}{2}a$	A1	
	OR:	Obtain critical value $x = \frac{1}{2}a$ from a graphical method, or by inspection, or by solving		
		a linear equation or inequality	B1	
		Obtain critical value $x = \frac{1}{4}a$ similarly	B2	
		State answer $\frac{1}{4}a < x < \frac{5}{2}a$	B1	4
		[Do not condone \leq for \leq .]		

10

n = 33

The diagram shows the curve $y = 10e^{-\frac{1}{2}x} \sin 4x$ for $x \ge 0$. The stationary points are labelled T_1, T_2, T_3, \dots as shown.

- (i) Find the x-coordinates of T_1 and T_2 , giving each x-coordinate correct to 3 decimal places. [6]
- (ii) It is given that the x-coordinate of T_n is greater than 25. Find the least possible value of n. [4]

9709_s14_ms_31.pdf

10	(i)	Use of product or quotient rule	M1	
		Obtain $-5e^{-\frac{1}{2}x} \sin 4x + 40e^{-\frac{1}{2}x} \cos 4x$	A1	
		Equate $\frac{dy}{dx}$ to zero and obtain $\tan 4z = k$ or $R \cos(4x \pm \alpha)$	M1	
		Obtain $\tan 4x = 8 \text{ or } \sqrt{65} \cos \left(4x \pm \tan^{-1} \frac{1}{8}\right)$	A1	
		Obtain 0.362 or 20.7°	A1	
		Obtain 1.147 or 65.7°	A1	[6]
	(ii)	State or imply that <i>x</i> -coordinates of T_n are increasing by $\frac{1}{4}\pi$ or 45°	В1	
		Attempt solution of inequality (or equation) of form $x_1 + (n-1)k\pi$. 25	M1	
		Obtain $n > \frac{4}{\pi} (25 - 0.362) + 1$, following through on their value of x_1	A1√	

[4]

A1

2 Use the substitution $u = 1 + 3 \tan x$ to find the exact value of

$$\int_0^{\frac{1}{4}\pi} \frac{\sqrt{(1+3\tan x)}}{\cos^2 x} \, \mathrm{d}x.$$

[5]

9709_s14_ms_31.pdf

2 State $\frac{du}{dx} = 3\sec^2 x$ or equivalent

B1

Express integral in terms of u and du (accept unsimplified and without limits)

M1

Obtain
$$\int \frac{1}{3} u^{\frac{1}{2}} du$$

A1

Integrate $Cu^{\frac{1}{2}}$ to obtain $\frac{2C}{3}u^{\frac{1}{2}}$

M1

Obtain
$$\frac{14}{9}$$

A1 [5]

- 1 (i) Simplify $\sin 2\alpha \sec \alpha$.
 - (ii) Given that $3\cos 2\beta + 7\cos \beta = 0$, find the exact value of $\cos \beta$.

9709_s14_ms_31.pdf

1 (i) State $\sin 2\alpha = 2\sin \alpha \cos \alpha$ and $\sec \alpha = 1/\cos \alpha$ Obtain $2\sin \alpha$

- B1 B1
 - B1 [2]

[2]

[3]

- (ii) Use $\cos 2\beta = 2\cos^2 \beta 1$ or equivalent to produce correct equation in $\cos \beta$ Solve three-term quadratic equation for $\cos \beta$
- B1 M1

Obtain $\cos \beta = \frac{1}{3}$ only

A1 [3]

9

The diagram shows the curve $y = e^{2\sin x} \cos x$ for $0 \le x \le \frac{1}{2}\pi$, and its maximum point M.

- (i) Using the substitution $u = \sin x$, find the exact value of the area of the shaded region bounded by the curve and the axes. [5]
- (ii) Find the x-coordinate of M, giving your answer correct to 3 decimal places. [6]

9709_s14_ms_33.pdf

9	(i)	Substitute for x and dx throughout using $u = \sin x$ and $du = \cos x dx$, or equivalent	M1	
		Obtain integrand e ^{2u}	A1	
		Obtain indefinite integral $\frac{1}{2}e^{2u}$	A1	
		Use limits $u = 0$, $u = 1$ correctly, or equivalent	M1	
		Obtain answer $\frac{1}{2}(e^2 - 1)$, or exact equivalent	A1	5

6

The diagram shows the curve $(x^2 + y^2)^2 = 2(x^2 - y^2)$ and one of its maximum points M. Find the coordinates of M.

9709_**\$14**_ms_33.pdf

6	Obtain correct derivative of RHS in any form	B1	
	Obtain correct derivative of LHS in any form	B1	
	Set $\frac{dy}{dx}$ equal to zero and obtain a horizontal equation	M1	
	Obtain a correct equation, e.g. $x^2 + y^2 = 1$, from correct work	A1	
	By substitution in the curve equation, or otherwise, obtain an equation in x^2 or y^2	M1	
	Obtain $x = \frac{1}{2}\sqrt{3}$	A1	
	Obtain $y = \frac{1}{2}$	A1	7

8 (i) By first expanding $\sin(2\theta + \theta)$, show that

$$\sin 3\theta = 3\sin \theta - 4\sin^3 \theta. \tag{4}$$

- (ii) Show that, after making the substitution $x = \frac{2\sin\theta}{\sqrt{3}}$, the equation $x^3 x + \frac{1}{6}\sqrt{3} = 0$ can be written in the form $\sin 3\theta = \frac{3}{4}$.
- (iii) Hence solve the equation

$$x^3 - x + \frac{1}{6}\sqrt{3} = 0,$$

giving your answers correct to 3 significant figures.

[4]

9709_w14_ms_32.pdf

8 (i) Use $\sin(A + B)$ formula to express $\sin 3\theta$ in terms of trig. functions of 2θ and θ M1

Use correct double angle formulae and Pythagoras to express $\sin 3\theta$ in terms of $\sin \theta$ M1

Obtain a correct expression in terms of $\sin \theta$ in any form

Obtain the given identity

[SP: Give M1 for using a correct formulae to express PUS in terms of $\sin \theta$ and $\cos 2\theta$

[SR: Give M1 for using correct formulae to express RHS in terms of $\sin\theta$ and $\cos2\theta$, then M1A1 for expressing in terms of $\sin\theta$ and $\sin3\theta$ only, or in terms of $\cos\theta$, $\sin\theta$, $\cos2\theta$ and $\sin2\theta$, then A1 for obtaining the given identity.]

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2014	9709	32

(ii) Substitute for x and obtain the given answer B1 [1]

(iii) Carry out a correct method to find a value of x M1
Obtain answers 0.322, 0.799, -1.12 A1 + A1 + A1 [4]
[Solutions with more than 3 answers can only earn a maximum of A1 + A1.]

7 In a certain country the government charges tax on each litre of petrol sold to motorists. The revenue per year is *R* million dollars when the rate of tax is *x* dollars per litre. The variation of *R* with *x* is modelled by the differential equation

$$\frac{\mathrm{d}R}{\mathrm{d}x} = R\left(\frac{1}{x} - 0.57\right),$$

where R and x are taken to be continuous variables. When x = 0.5, R = 16.8

- (i) Solve the differential equation and obtain an expression for R in terms of x. [6]
- (ii) This model predicts that R cannot exceed a certain amount. Find this maximum value of R. [3]

9709_w14_ms_32.pdf

7	(1)	Separate variables correctly and attempt to integrate at least one side	$_{\rm BI}$	
		Obtain term lnR	B1	
		Obtain $\ln x - 0.57x$	B1	
		Evaluate a constant or use limits $x = 0.5$, $R = 16.8$, in a solution containing terms of the form $a \ln R$ and $b \ln x$ Obtain correct solution in any form	M1 A1	
		Obtain a correct expression for R, e.g. $R = xe^{(3.80 - 0.57x)}$, $R = 44.7xe^{-0.57x}$ or		
		$R = 33.6xe^{(0.285 - 0.57x)}$	Al	[6]
	(ii)	Equate $\frac{dR}{dx}$ to zero and solve for x	M1	
		State or imply $x = 0.57^{-1}$, or equivalent, e.g. 1.75	A1	
		Obtain $R = 28.8$ (allow 28.9)	A1	[3]

6 It is given that $\int_{1}^{a} \ln(2x) dx = 1$, where a > 1.

(i) Show that
$$a = \frac{1}{2} \exp\left(1 + \frac{\ln 2}{a}\right)$$
, where $\exp(x)$ denotes e^x . [6]

(ii) Use the iterative formula

$$a_{n+1} = \frac{1}{2} \exp\left(1 + \frac{\ln 2}{a_n}\right)$$

to determine the value of a correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]

9709_w14_ms_32.pdf

(i)	Integrate and reach $bx\ln 2x - c\int x \cdot \frac{1}{x} dx$, or equivalent	M1*	
	Obtain $x \ln 2x - \int x \cdot \frac{1}{x} dx$, or equivalent	A1	
	Obtain integral $x \ln 2x - x$, or equivalent	A1	
		M1(dep*)	
	Obtain a correct equation in any form, e.g. $a \ln 2a - a + 1 - \ln 2 = 1$	A1	
	Obtain the given answer	A1	[6]
(ii)	Use the iterative formula correctly at least once	M1	
	Obtain final answer 1.94	A1	
	Show sufficient iterations to 4 d.p. to justify 1.94 to 2d.p. or show that there is a sign		
	change in the interval (1.935, 1.945).	A1	[3]
	(i) (ii)	Obtain $x \ln 2x - \int x \cdot \frac{1}{x} dx$, or equivalent Obtain integral $x \ln 2x - x$, or equivalent Substitute limits correctly and equate to 1, having integrated twice Obtain a correct equation in any form, e.g. $a \ln 2a - a + 1 - \ln 2 = 1$ Obtain the given answer (ii) Use the iterative formula correctly at least once Obtain final answer 1.94 Show sufficient iterations to 4 d.p. to justify 1.94 to 2d.p. or show that there is a sign	Obtain $x \ln 2x - \int x \cdot \frac{1}{x} dx$, or equivalent Obtain integral $x \ln 2x - x$, or equivalent Substitute limits correctly and equate to 1, having integrated twice Obtain a correct equation in any form, e.g. $a \ln 2a - a + 1 - \ln 2 = 1$ Obtain the given answer (ii) Use the iterative formula correctly at least once Obtain final answer 1.94 Show sufficient iterations to 4 d.p. to justify 1.94 to 2d.p. or show that there is a sign

10 By first using the substitution $u = e^x$, show that

$$\int_0^{\ln 4} \frac{e^{2x}}{e^{2x} + 3e^x + 2} dx = \ln\left(\frac{8}{5}\right).$$
 [10]

9709_w14_ms_33.pdf

10 State or imply
$$\frac{du}{dx} = e^x$$
Substitute throughout for x and dx
Obtain $\int \frac{u}{x^2 - 2x} du$ or equivalent (ignoring limits so far)

A1

Obtain
$$\int \frac{u}{u^2 + 3u + 2} du$$
 or equivalent (ignoring limits so far)

State or imply partial fractions of form
$$\frac{A}{u+2} + \frac{B}{u+1}$$
, following their integrand B1

Obtain correct
$$\frac{2}{u+2} - \frac{1}{u+1}$$

Integrate to obtain
$$a \ln(u+2) + b \ln(u+1)$$
 M1

Obtain
$$2\ln(u+2) - \ln(u+1)$$
 or equivalent, follow their A and B

Obtain given answer
$$\ln \frac{8}{5}$$
 legitimately A1 [10]

SR for integrand
$$\frac{u^2}{u(u+1)(u+2)}$$

State or imply partial fractions of form
$$\frac{A}{u} + \frac{B}{u+1} + \frac{C}{u+2}$$
 (B1)

Obtain correct
$$\frac{2}{u+2} - \frac{1}{u+1}$$
 (A1)

...complete as above.

8 The variables x and y are related by the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{5}xy^{\frac{1}{2}}\sin\left(\frac{1}{3}x\right).$$

- (i) Find the general solution, giving y in terms of x.
- (ii) Given that y = 100 when x = 0, find the value of y when x = 25.

[6]

9709_w14_ms_33.pdf

8	(i)	Sensibly separate variables and attempt integration of at least one side	M1	
		Obtain $2y^{\frac{1}{2}} =$ or equivalent	A1	
		Correct integration by parts of $x \sin \frac{1}{3}x$ as far as $ax \cos \frac{1}{3}x \pm \int b \cos \frac{1}{3}x dx$	M1	
		Obtain $-3x\cos\frac{1}{3}x + \int 3\cos\frac{1}{3}x dx$ or equivalent	A1	
		Obtain $-3x\cos\frac{1}{3}x + 9\sin\frac{1}{3}x$ or equivalent	A1	
		Obtain $y = \left(-\frac{3}{10}x\cos\frac{1}{3}x + \frac{9}{10}\sin\frac{1}{3}x + c\right)^2$ or equivalent	A1	[6]
	(ii)	Use $y = 0$ and $y = 100$ to find constant	M*1	

(ii) Use x = 0 and y = 100 to find constant

Substitute 25 and calculate value of yObtain 203

M*1

DM*1

A1 [3]

The diagram shows part of the curve with parametric equations

$$x = 2\ln(t+2),$$
 $y = t^3 + 2t + 3.$

- (i) Find the gradient of the curve at the origin.
- (ii) At the point P on the curve, the value of the parameter is p. It is given that the gradient of the curve at P is $\frac{1}{2}$.
 - (a) Show that $p = \frac{1}{3p^2 + 2} 2$. [1]

[5]

(b) By first using an iterative formula based on the equation in part (a), determine the coordinates of the point P. Give the result of each iteration to 5 decimal places and each coordinate of P correct to 2 decimal places.
[4]

9709_s15_ms_31.pdf

10 (i) Obtain
$$\frac{dx}{dt} = \frac{2}{t+2}$$
 and $\frac{dy}{dt} = 3t^2 + 2t^2$

Use
$$\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$$

Obtain
$$\frac{dy}{dx} = \frac{1}{2} (3t^2 + 2)(t + 2)$$

Identify value of t at the origin as -1

Substitute to obtain $\frac{5}{2}$ as gradient at the origin

- (ii) (a) Equate derivative to $\frac{1}{2}$ and confirm $p = \frac{1}{3p^2 + 2} 2$
 - **(b)** Use the iterative formula correctly at least once Obtain value p = -1.924 or better (-1.92367...)

Show sufficient iterations to justify accuracy or show a sign change in appropriate interval

Obtain coordinates (-5.15, -7.97)

- 8 The complex number w is defined by $w = \frac{22 + 4i}{(2 i)^2}$.
 - (i) Without using a calculator, show that w = 2 + 4i. [3]
 - (ii) It is given that p is a real number such that $\frac{1}{4}\pi \le \arg(w+p) \le \frac{3}{4}\pi$. Find the set of possible values of p.
 - (iii) The complex conjugate of w is denoted by w^* . The complex numbers w and w^* are represented in an Argand diagram by the points S and T respectively. Find, in the form |z a| = k, the equation of the circle passing through S, T and the origin. [3]

9709_s15_ms_31.pdf

(i)	Either	Expand $(2-i)^2$ to obtain $3-4i$ or unsimplified equivalent	B1	
		Multiply by $\frac{3+4i}{3+4i}$ and simplify to $x+iy$ form or equivalent	M1	
		Confirm given answer 2+4i	A1	
	<u>Or</u>	Expand $(2-i)^2$ to obtain 3-4i or unsimplified equivalent	B1	
		Obtain two equations in x and y and solve for x or y	M1	
		Confirm given answer 2+4i	A1	[3]
(ii)			B1	
				523
	State –6	$\leq p \leq 2$	Al	[3]
(iii)	Identify	equation as of form $ z - a = a$ or equivalent	M1	
	Form co	rrect equation for a not involving modulus, e.g. $(a-2)^2 + 4^2 = a^2$	A1	
	State z	-5 = 5	A1	[3]
		Or (ii) Identify Use app State -6 (iii) Identify Form co	Multiply by $\frac{3+4i}{3+4i}$ and simplify to $x+iy$ form or equivalent Confirm given answer $2+4i$ Or Expand $(2-i)^2$ to obtain $3-4i$ or unsimplified equivalent Obtain two equations in x and y and solve for x or y Confirm given answer $2+4i$ (ii) Identify $4+4$ or $-4+4i$ as point at either end or state $p=2$ or state $p=-6$ Use appropriate method to find both critical values of p State $-6 \le p \le 2$	Multiply by $\frac{3+4i}{3+4i}$ and simplify to $x+iy$ form or equivalent Confirm given answer $2+4i$ Or Expand $(2-i)^2$ to obtain $3-4i$ or unsimplified equivalent Obtain two equations in x and y and solve for x or y Confirm given answer $2+4i$ Al (ii) Identify $4+4$ or $-4+4i$ as point at either end or state $p=2$ or state $p=-6$ Use appropriate method to find both critical values of p State $-6 \le p \le 2$ Al (iii) Identify equation as of form $ z-a =a$ or equivalent Form correct equation for a not involving modulus, e.g. $(a-2)^2+4^2=a^2$ Al

5 (a) Find
$$\int (4 + \tan^2 2x) dx$$
. [3]

(b) Find the exact value of
$$\int_{\frac{1}{4}\pi}^{\frac{1}{2}\pi} \frac{\sin(x + \frac{1}{6}\pi)}{\sin x} dx.$$
 [5]

9709_s15_ms_31.pdf

5 (a) Use identity
$$\tan^2 2x = \sec^2 2x - 1$$
 B1
Obtain integral of form $ax + b \tan 2x$ M1
Obtain correct $3x + \frac{1}{2} \tan 2x$, condoning absence of $+c$ A1 [3]

(b) State
$$\sin x \cos \frac{1}{2} \pi + \cos x \sin \frac{1}{6} \pi$$

Simplify integrand to
$$\cos \frac{1}{6}\pi + \frac{\cos x \sin \frac{1}{6}\pi}{\sin x}$$
 or equivalent B1

Integrate to obtain at least term of form
$$a \ln(\sin x)$$
 *M1

Apply limits and simplify to obtain two terms M1 of

Apply limits and simplify to obtain two terms

Obtain
$$\frac{1}{8} \pi \sqrt{3} - \frac{1}{2} \ln(\frac{1}{\sqrt{2}})$$
 or equivalent

A1 [5]

- **9** The complex number 3 i is denoted by u. Its complex conjugate is denoted by u^* .
 - (i) On an Argand diagram with origin O, show the points A, B and C representing the complex numbers u, u^* and u^* u respectively. What type of quadrilateral is OABC? [4]
 - (ii) Showing your working and without using a calculator, express $\frac{u^*}{u}$ in the form x + iy, where x and y are real. [3]
 - (iii) By considering the argument of $\frac{u^*}{u}$, prove that

$$\tan^{-1}(\frac{3}{4}) = 2\tan^{-1}(\frac{1}{3}).$$
 [3]

9709_w15_ms_31.pdf

9	(i)	Show u in a relatively correct position Show u^* in a relatively correct position Show $u^* - u$ in a relatively correct position State or imply that $OABC$ is a parallelogram	B1 B1 B1 B1	[4]
	(ii)	EITHER: Substitute for u and multiply numerator and denominator by $3 + i$, or equivalent Simplify the numerator to $8 + 6i$ or the denominator to 10 Obtain final answer $\frac{4}{5} + \frac{3}{5}i$, or equivalent	M1 A1 A1	
		OR: Substitute for u , obtain two equations in x and y and solve for x or for y . Obtain $x = \frac{4}{5}$ or $y = \frac{3}{5}$, or equivalent	M1 A1	
		Obtain final answer $\frac{4}{5} + \frac{3}{5}i$, or equivalent	A1	[3]

- The equation of a curve is $y = e^{-2x} \tan x$, for $0 \le x < \frac{1}{2}\pi$. 5
 - (i) Obtain an expression for $\frac{dy}{dx}$ and show that it can be written in the form $e^{-2x}(a+b\tan x)^2$, where a and b are constants. [5]
 - (ii) Explain why the gradient of the curve is never negative. [1]
 - (iii) Find the value of x for which the gradient is least. [1]

5	(i)	State or imply that the derivative of e^{-2x} is $-2e^{-2x}$ Use product or quotient rule Obtain correct derivative in any form Use Pythagoras	B1 M1 A1 M1	
		Justify the given form	A1	[5]
	(ii)	Fully justify the given statement	B1	[1]
	(iii)	State answer $x = \frac{1}{4}\pi$	B1	[1]

3 The angles θ and ϕ lie between 0° and 180° , and are such that

$$\tan(\theta - \phi) = 3$$
 and $\tan \theta + \tan \phi = 1$

Find the possible values of θ and ϕ .

[6]

9709_w15_ms_31.pdf

3	Use $tan(A \pm B)$ and obtain an equation in $tan \theta$ and $tan \phi$	M1*	
	Substitute throughout for tan θ or for tan ϕ	dep M1*	
	Obtain $3 \tan^2 \theta - \tan \theta - 4 = 0$ or $3 \tan^2 \phi - 5 \tan \phi - 2 = 0$, or 3-term equivalent	A1	
	Solve a 3-term quadratic and find an angle	M1	
	Obtain answer $\theta = 135^{\circ}$, $\phi = 63.4^{\circ}$	A1	
	Obtain answer $\theta = 53.1^{\circ}$, $\phi = 161.6^{\circ}$	A1	[6]
	[Treat answers in radians as a misread. Ignore answers outside the given interval.]		
	[SR: Two correct values of θ (or ϕ) score A1; then A1 for both correct θ , ϕ pairs.]		

- 9 (a) It is given that (1+3i)w = 2+4i. Showing all necessary working, prove that the exact value of $|w^2|$ is 2 and find $arg(w^2)$ correct to 3 significant figures. [6]
 - (b) On a single Argand diagram sketch the loci |z| = 5 and |z 5| = |z|. Hence determine the complex numbers represented by points common to both loci, giving each answer in the form $re^{i\theta}$. [4]

9709_w15_ms_33.pdf_

9	(a) Either	Find w using conjugate of 1+3i	M1
		Find w using conjugate of $1+3i$ Obtain $\frac{7-i}{5}$ or equivalent	A1
		Square $x + iy$ form to find w^2	M1
		Obtain $w^2 = \frac{48 - 14i}{25}$ and confirm modulus is 2	A1
		Use correct process for finding argument of w^2	M1
		Obtain −0.284 radians or −16.3°	A1
	<u>Or 1</u>	Find w using conjugate of $1+3i$	M1
		Obtain $\frac{7-i}{5}$ or equivalent	A1
		Find modulus of w and hence of w^2	M1
		Confirm modulus is 2	A1
		Find argument of w and hence of w^2	M1
		Obtain −0.284 radians or −16.3°	A1
	<u>Or 2</u>	Square both sides to obtain $(-8 + 6i)w^2 = -12 + 16i$	B1
		Find w^2 using relevant conjugate	M1
		Use correct process for finding modulus of w^2	M1
		Confirm modulus is 2	A1
		Use correct process for finding argument of w^2	M1
		Obtain −0.284 radians or −16.3°	A1

7 (i) Show that
$$(x + 1)$$
 is a factor of $4x^3 - x^2 - 11x - 6$. [2]

(ii) Find
$$\int \frac{4x^2 + 9x - 1}{4x^3 - x^2 - 11x - 6} \, dx.$$
 [8]

	(ii	i) Find	$\int \frac{4x^2 + 9x - 1}{4x^3 - x^2 - 11x - 6} \mathrm{d}x.$		[8]
			9709_w15_ms_33.pdf		
7	(i)	Either	Substitute $x = -1$ and evaluate Obtain 0 and conclude $x + 1$ is a factor	M1 A1	
		<u>Or</u>	Divide by $x + 1$ and obtain a constant remainder Obtain remainder = 0 and conclude $x + 1$ is a factor	M1 A1	[2]
	(ii)	Obtain	t division, or equivalent, at least as far as quotient $4x^2 + kx$ complete quotient $4x^2 - 5x - 6$	M1 A1	
		Use rele Obtain of Obtain a Integrat	orm $\frac{A}{x+1} + \frac{B}{x-2} + \frac{C}{4x+3}$ evant method for finding at least one constant one of $A = -2$, $B = 1$, $C = 8$ all three values the to obtain three terms each involving natural logarithm of linear form $-2 \ln(x+1) + \ln(x-2) + 2 \ln(4x+3)$, condoning no use of modulus signs	A1 M1 A1 A1 M1	
		and abs	ence of $\dots + c$	A1	[8]

6 The angles A and B are such that

$$\sin(A + 45^\circ) = (2\sqrt{2})\cos A$$
 and $4\sec^2 B + 5 = 12\tan B$.

[8]

Without using a calculator, find the exact value of tan(A - B).

9709_w15_ms_33.pdf

6	State or imply $\sin A \times \cos 45 + \cos A \times \sin 45 = 2\sqrt{2} \cos A$	B1	
	Divide by cos A to find value of tan A	M1	
	Obtain $\tan A = 3$	A1	
	Use identity $\sec^2 B = 1 + \tan^2 B$	B1	
	Solve three-term quadratic equation and find tan B	M1	
	Obtain $\tan B = \frac{3}{2}$ only	A1	
	Substitute numerical values in $\frac{\tan A - \tan B}{1 + \tan A \tan B}$	M1	
	Obtain $\frac{3}{11}$	A1	[8]

The diagram shows the curve $y = \csc x$ for $0 < x < \pi$ and part of the curve $y = e^{-x}$. When x = a, the tangents to the curves are parallel.

(i) By differentiating
$$\frac{1}{\sin x}$$
, show that if $y = \csc x$ then $\frac{dy}{dx} = -\csc x \cot x$. [3]

(ii) By equating the gradients of the curves at x = a, show that

$$a = \tan^{-1} \left(\frac{e^a}{\sin a} \right).$$
[2]

[2]

A1

[3]

(iii) Verify by calculation that a lies between 1 and 1.5.

change in the interval (1.3165, 1,3175)

(iv) Use an iterative formula based on the equation in part (ii) to determine a correct to 3 decimal places. Give the result of each iteration to 5 decimal places. [3]

9709_s16_ms_32.pdf

8	(i)	Use correct quotient or chain rule	M1	
		Obtain correct derivative in any form	A1	
		Obtain the given answer correctly	A1	[3]
	(ii)	State a correct equation, e.g. $-e^{-a} = -\cos ec \ a \cot a$	B1	
		Rearrange it correctly in the given form	B1	[2]
	(iii)	Calculate values of a relevant expression or pair of expressions at $x = 1$ and $x = 1.5$	M1	
		Complete the argument correctly with correct calculated values	A1	[2]
	(iv)	Use the iterative formula correctly at least once	M1	
		Obtain final answer 1.317	A1	
		Show sufficient iterations to 5 d.p. to justify 1.317 to 3 d.p., or show there is a sign		

- (i) Prove the identity $\cos 4\theta 4\cos 2\theta = 8\sin^4 \theta 3$. 5 [4]
 - (ii) Hence solve the equation

$$\cos 4\theta = 4\cos 2\theta + 3$$

(1	Hence solve the equation		
	$\cos 4\theta = 4\cos 2\theta + 3,$ for $0^{\circ} \le \theta \le 360^{\circ}$.		[4]
	9709_s16_ms_32.pdf		
5 (i)	EITHER: Express $\cos 4\theta$ in terms of $\cos 2\theta$ and/or $\sin 2\theta$ Use correct double angle formulae to express LHS in terms of $\sin \theta$ and/or $\cos \theta$ Obtain a correct expression in terms of $\sin \theta$ alone Reduce correctly to the given form OR: Use correct double angle formula to express RHS in terms of $\cos 2\theta$ Express $\cos^2 2\theta$ in terms of $\cos 4\theta$ Obtain a correct expression in terms of $\cos 4\theta$ and $\cos 2\theta$	B1 M1 A1 A1 M1 B1 A1	
(ii)	Reduce correctly to the given form	A1 M1 A1 A1√ A1√	[4]

10 The polynomial p(z) is defined by

$$p(z) = z^3 + mz^2 + 24z + 32,$$

where m is a constant. It is given that (z + 2) is a factor of p(z).

(i) Find the value of m. [2]

[5]

[6]

- (ii) Hence, showing all your working, find
 - (a) the three roots of the equation p(z) = 0,
 - **(b)** the six roots of the equation $p(z^2) = 0$.

9709_w10_ms_33.pdf

10 (i) Attempt to solve for m the equation p(-2) = 0 or equivalent Obtain m = 6 A1 [2]

Alternative:

- Attempt $p(z) \div (z+2)$, equate a constant remainder to zero and solve for m. M1 Obtain m = 6
- (ii) (a) State z = -2Attempt to find quadratic factor by inspection, division, identity, ...

 Obtain $z^2 + 4z + 16$ Use correct method to solve a 3-term quadratic equation

 Obtain $-2 \pm 2\sqrt{3}i$ or equivalent

 A1 [5]
 - (b) State or imply that square roots of answers from part (ii)(a) needed M1

 Obtain $\pm i\sqrt{2}$ Attempt to find square root of a further root in the form x + iy or in polar form

 Obtain $a^2 b^2 = -2$ and $ab = (\pm)\sqrt{3}$ following their answer to part (ii)(a)

 Solve for a and bObtain $\pm (1 + i\sqrt{3})$ and $\pm (1 i\sqrt{3})$ A1

 [6]

- 8 (i) Express $(\sqrt{6})\cos\theta + (\sqrt{10})\sin\theta$ in the form $R\cos(\theta \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$. Give the value of α correct to 2 decimal places. [3]
 - (ii) Hence, in each of the following cases, find the smallest positive angle θ which satisfies the equation

(a)
$$(\sqrt{6})\cos\theta + (\sqrt{10})\sin\theta = -4$$
, [2]

(b)
$$(\sqrt{6})\cos\frac{1}{2}\theta + (\sqrt{10})\sin\frac{1}{2}\theta = 3.$$
 [4]

9709_w10_ms_33.pdf

8	(i)	Obtain or imply $R = 4$	B1	
		Use appropriate trigonometry to find α	M1	
		Obtain $\alpha = 52.24$ or better from correct work	A1	[3]
	(ii)	(a) State or imply $\theta - \alpha = \cos^{-1}(-4 \div R)$	M1	[2]
		Obtain 232.2 or better	Al	[2]
		(b) Attempt at least one value using $\cos^{-1}(3 \div R)$	M1	
		Obtain one correct value e.g. $\pm 41.41^{\circ}$	A1	
		Use $\frac{1}{2}\theta - \alpha = \cos^{-1}\left(\frac{3}{R}\right)$ to find θ	M1	

A1

[4]

Obtain 21.7

The diagram shows the curve $y = \sqrt{\left(\frac{1-x}{1+x}\right)}$.

- (i) By first differentiating $\frac{1-x}{1+x}$, obtain an expression for $\frac{dy}{dx}$ in terms of x. Hence show that the gradient of the normal to the curve at the point (x, y) is $(1+x)\sqrt{1-x^2}$. [5]
- (ii) The gradient of the normal to the curve has its maximum value at the point P shown in the diagram. Find, by differentiation, the x-coordinate of P. [4]

9709_s10_ms_31.pdf

9	(i)	Use quotient or product rule to differentiate $(1-x)/(1+x)$	M1	
		Obtain correct derivative in any form	A1	
		Use chain rule to find $\frac{dy}{dx}$	M1	
		Obtain a correct expression in any form	A1	
		Obtain the gradient of the normal in the given form correctly	A1	[5]
((ii)	Use product rule	M1	
		Obtain correct derivative in any form	A1	
		Equate derivative to zero and solve for x	M1	
		Obtain $x = \frac{1}{2}$	A1	[4]

5 The curve with equation

$$6e^{2x} + ke^y + e^{2y} = c$$

where k and c are constants, passes through the point P with coordinates ($\ln 3$, $\ln 2$).

(i) Show that 58 + 2k = c. [2]

(ii) Given also that the gradient of the curve at P is -6, find the values of k and c. [5]

9709_s11_ms_31.pdf

- 5 (i) Use at least one of $e^{2x} = 9$, $e^y = 2$ and $e^{2y} = 4$ B1

 Obtain given result 58 + 2k = c AG

 B1 [2]
 - (ii) Differentiate left-hand side term by term, reaching $ae^{2x} + be^y \frac{dy}{dx} + ce^{2y} \frac{dy}{dx}$ M1

Obtain $12e^{2x} + ke^{y}\frac{dy}{dx} + 2e^{2y}\frac{dy}{dx}$

Substitute (In 3, In 2) in an attempt involving implicit differentiation at least once, where RHS = 0

Obtain 108 - 12k - 48 = 0 or equivalent A1 Obtain k = 5 and c = 68 A1 [5] 4 The polynomial f(x) is defined by

$$f(x) = 12x^3 + 25x^2 - 4x - 12.$$

[4]

[3]

- (i) Show that f(-2) = 0 and factorise f(x) completely.
- (ii) Given that

$$12 \times 27^{y} + 25 \times 9^{y} - 4 \times 3^{y} - 12 = 0$$

state the value of 3^y and hence find y correct to 3 significant figures.

9709_s11_ms_31.pdf

4 (i) Verify that -96 + 100 + 8 - 12 = 0 B1

Attempt to find quadratic factor by division by (x + 2), reaching a partial quotient $12x^2 + kx$, inspection or use of an identity

 $12x^2 + kx$, inspection or use of an identity M1 Obtain $12x^2 + x - 6$

State (x + 2)(4x + 3)(3x - 2) A1 [4]

[The M1 can be earned if inspection has unknown factor $Ax^2 + Bx - 6$ and an equation in A and/or B or equation $12x^2 + Bx + C$ and an equation in B and/or C.]

(ii) State $3^y = \frac{2}{3}$ and no other value B1

Use correct method for finding y from equation of form $3^y = k$, where k > 0 M1
Obtain -0.369 and no other value A1 [3]

- In a chemical reaction, a compound X is formed from two compounds Y and Z. The masses in grams of X, Y and Z present at time t seconds after the start of the reaction are t, t and t and t respectively. At any time the rate of formation of t is proportional to the product of the masses of t and t present at the time. When t = 0, t and t and t and t are t are t and t are t are t and t are t are t and t are t and t are t are t and t are t are t and t are t and t are t and t are t and t are t are t and t are t are t and t are t and t are t and t are t and t are t are t are t and t are t are t and t are t are t and t are t and t are t and t are t are t and t are t are t are t and t are t and t are t and t are t and t are t are t and t are t are t and t are t are t are t are t and t are t are t and t are t are t are t are t and t are t are t and t are t are t and t are t and t are t are t and t are t and t are t are t and t are t are t and t are t and t are t are t and t are t are t and t a
 - (i) Show that x and t satisfy the differential equation

(iii) State that x approaches 10

$$\frac{\mathrm{d}x}{\mathrm{d}t} = 0.01(10 - x)(20 - x).$$
[1]

B1

[1]

- (ii) Solve this differential equation and obtain an expression for x in terms of t. [9]
- (iii) State what happens to the value of x when t becomes large. [1]

9709_s11_ms_33.pdf

(ii) State or imply
$$\frac{dx}{dt} = k(10 - x)(20 - x)$$
 and show $k = 0.01$

B1 [1]

(iii) Separate variables correctly and attempt integration of at least one side

Carry out an attempt to find A and B such that $\frac{1}{(10 - x)(20 - x)} = \frac{A}{10 - x} + \frac{B}{20 - x}$, or equivalent

M1

Obtain $A = \frac{1}{10}$ and $B = -\frac{1}{10}$ or equivalent

Integrate and obtain $-\frac{1}{10}\ln(10 - x) + \frac{1}{10}\ln(20 - x)$, or equivalent

Evaluate a constant, or use limits $t = 0$, $x = 0$, in a solution containing terms of the form $a \ln(10 - x)$, $b \ln(20 - x)$ and ct

Obtain answer in any form, e.g. $-\frac{1}{10}\ln(10 - x) + \frac{1}{10}\ln(20 - x) = 0.01t + \frac{1}{10}\ln 2$

A1 $\sqrt{100}$

Use laws of logarithms to correctly remove logarithms

Rearrange and obtain $x = 20(\exp(0.1t) - 1)/(2\exp(0.1t) - 1)$, or equivalent

A1 [9]

The diagram shows the curve $y = 5 \sin^3 x \cos^2 x$ for $0 \le x \le \frac{1}{2}\pi$, and its maximum point M.

(i) Find the x-coordinate of M. [5]

(ii) Using the substitution $u = \cos x$, find by integration the area of the shaded region bounded by the curve and the x-axis. [5]

9709_s11_ms_33.pdf

8	(i)	Use product and chain rule	M1	
		Obtain correct derivative in any form, e.g. $15\sin^2 x \cos^3 x - 10\sin^4 x \cos x$	A1	
		Equate derivative to zero and obtain a relevant equation in one trigonometric function	M1	
		Obtain $2 \tan^2 x = 3$, $5 \cos^2 x = 2$, or $5 \sin^2 x = 3$	A1	
		Obtain answer $x = 0.886$ radians	A1	[5]
		du		
	(ii)	State or imply $du = -\sin x dx$ or $\frac{du}{dt} = -\sin x$ or equivalent	R1	

- (ii) State or imply $du = -\sin x \, dx$, or $\frac{du}{dx} = -\sin x$, or equivalent

 Express integral in terms of u and duObtain $\pm \int 5(u^2 u^4) \, du$, or equivalent

 A1

 Integrate and use limits u = 1 and u = 0 (or x = 0 and $x = \frac{1}{2}\pi$)
 - Obtain answer $\frac{2}{3}$, or equivalent, with no errors seen A1 [5]

7 (i) Find the roots of the equation

$$z^2 + (2\sqrt{3})z + 4 = 0,$$

giving your answers in the form x + iy, where x and y are real. [2]

(ii) State the modulus and argument of each root.

(iii) Showing all your working, verify that each root also satisfies the equation

$$z^6 = -64.$$
 [3]

[3]

9709_s11_ms_33.pdf

- 7 (i) Use the quadratic formula, completing the square, or the substitution z = x + iy to find a root and use i² = -1
 M1
 Obtain final answers √3 ± i, or equivalent
 A1 [2]
 - (ii) State that the modulus of both roots is 2

 State that the argument of $-\sqrt{3} + i'$ is 150° or $\frac{5}{6}\pi$ (2.62) radians

 B1 $\sqrt{}$

State that the argument of $-\sqrt{3}$ - i is -150° (or 210°) or $-\frac{5}{6}\pi$ (-2.62) radians or

$$\frac{7}{6}\pi$$
 (3.67) radians B1 $\sqrt{3}$

(iii) Carry out an attempt to find the sixth power of a root

Verify that one of the roots satisfies $z^6 = -64$ Verify that the other root satisfies the equation

A1 [3]

6 Let
$$I = \int_{1}^{4} \frac{(\sqrt{x}) - 1}{2(x + \sqrt{x})} dx$$
.

(i) Using the substitution
$$u = \sqrt{x}$$
, show that $I = \int_{1}^{2} \frac{u-1}{u+1} du$. [3] (ii) Hence show that $I = 1 + \ln \frac{4}{9}$.

[6]

9709_w16_ms_33.pdf

6 (i)	State or imply $du = \frac{1}{2\sqrt{x}}dx$ Substitute for x and dx throughout Justify the change in limits and obtain the given answer	B1 M1 A1	[3]
(ii)	Convert integrand into the form $A + \frac{B}{u+1}$ Obtain integrand $A = 1$, $B = -2$ Integrate and obtain $u - 2\ln(u+1)$ Substitute limits correctly in an integral containing terms au and $b\ln(u+1)$, where $ab \neq 0$ Obtain the given answer following full and correct working [The f.t. is on A and B .]	M1* A1 A1√ + A1√ DM1 A1	[6]

- 10 (i) It is given that $2 \tan 2x + 5 \tan^2 x = 0$. Denoting $\tan x$ by t, form an equation in t and hence show that either t = 0 or $t = \sqrt[3]{(t + 0.8)}$. [4]
 - (ii) It is given that there is exactly one real value of t satisfying the equation $t = \sqrt[3]{(t+0.8)}$. Verify by calculation that this value lies between 1.2 and 1.3.
 - (iii) Use the iterative formula $t_{n+1} = \sqrt[3]{(t_n + 0.8)}$ to find the value of t correct to 3 decimal places. Give the result of each iteration to 5 decimal places. [3]
 - (iv) Using the values of t found in previous parts of the question, solve the equation

$$2\tan 2x + 5\tan^2 x = 0$$

for $-\pi \le x \le \pi$.

9709_s12_ms_31.pdf

IVII	
A1	
M1	
A1	[4]
M1	
A1	[2]
M1	
A1	
A1	[3]
M1	
A1	
B1	[3]
	M1 A1 M1 A1 I A1

[SR If A0, B0, allow B1 for any 3 roots]

The diagram shows part of the curve $y = \cos(\sqrt{x})$ for $x \ge 0$, where x is in radians. The shaded region between the curve, the axes and the line $x = p^2$, where p > 0, is denoted by R. The area of R is equal to 1.

- (i) Use the substitution $x = u^2$ to find $\int_0^{p^2} \cos(\sqrt{x}) dx$. Hence show that $\sin p = \frac{3 2\cos p}{2p}$. [6]
- (ii) Use the iterative formula $p_{n+1} = \sin^{-1} \left(\frac{3 2 \cos p_n}{2p_n} \right)$, with initial value $p_1 = 1$, to find the value of p correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]

9709_s12_ms_33.pdf

- 7 (i) Substitute for x and dx throughout the integral Obtain $\int 2u \cos u \, du$ A1

 Integrate by parts and obtain answer of the form $au \sin u + b \cos u$, where $ab \neq 0$ M1
 Obtain $2u \sin u + 2 \cos u$ A1
 Use limits u = 0, u = p correctly and equate result to 1
 Obtain the given answer A1 [6]
 - (ii) Use the iterative formula correctly at least once
 Obtain final answer p = 1.25Show sufficient iterations to 4 d.p. to justify its accuracy to 2 d.p., or show there is a sign change in the interval (1.245, 1.255)A1 [3]

- 6 It is given that $\tan 3x = k \tan x$, where k is a constant and $\tan x \neq 0$.
 - (i) By first expanding tan(2x + x), show that

$$(3k-1)\tan^2 x = k-3.$$
 [4]

- (ii) Hence solve the equation $\tan 3x = k \tan x$ when k = 4, giving all solutions in the interval $0^{\circ} < x < 180^{\circ}$.
- (iii) Show that the equation $\tan 3x = k \tan x$ has no root in the interval $0^{\circ} < x < 180^{\circ}$ when k = 2. [1]

9709_s12_ms_33.pdf

6	(i)	Use $tan(A + B)$ and $tan 2A$ formulae to obtain an equation in $tan x$	M1	
		Obtain a correct equation in tan x in any form	A1	
		Obtain an expression of the form $a \tan^2 x = b$	M1	
		Obtain the given answer	A1	[4]
	(ii)	Substitute $k = 4$ in the given expression and solve for x	M1	
		Obtain answer, e.g. $x = 16.8^{\circ}$	A1	
		Obtain second answer, e.g. $x = 163.2^{\circ}$, and no others in the given interval	A1	[3]
		[Ignore answers outside the given interval. Treat answers in radians as a misread and deduct A1 from the marks for the angles.]		
	(iii)	Substitute $k = 2$, show $\tan^2 x < 0$ and justify given statement correctly	В1	[1]