Name

20/02 Conn

CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CHEMISTRY 0620/02

Paper 2

October/November 2003

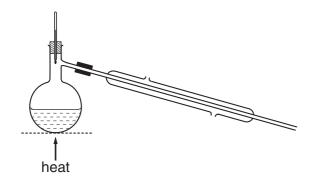
1 hour

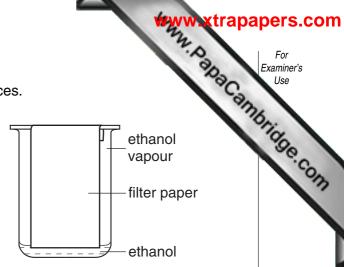
Candidates answer on the Question Paper. No Additional Materials required

READ THESE INSTRUCTIONS FIRST

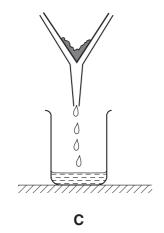
Write your name, centre number and candidate number in the spaces at the top of this page. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a pencil for any diagrams, graphs, or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

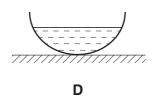
Answer all questions.


The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is provided on page 20.


If you have been given a label, look at the details. If any details are incorrect or missing, please fill in your correct details in the space given at the top of this page.

Stick your personal label here, if provided.


For Exam	iner's Use
1	
2	
3	
4	
5	
6	
TOTAL	

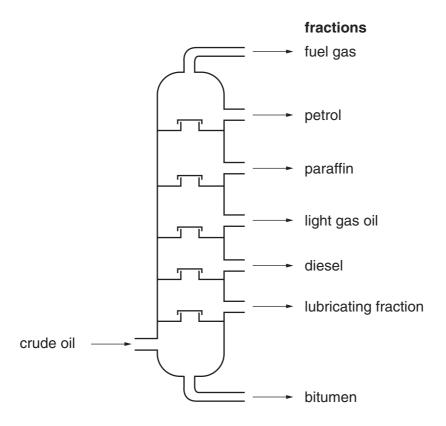

1 The diagrams show four methods of purifying substances.

В

(a) Which of these methods, A,B,C or D, is best used for

(i) separating the different colours in a sample of ink?

(ii) separating two liquids with different boiling points?


(iii) separating mud from water?

(iv) making crystals of copper sulphate from copper sulphate solution?

[4]

For Examiner's

- (b) State the name given to the method of separation shown in
 - (i) diagram A,
 - (ii) diagram **B**.
- **(c)** Method A can be modified to separate petroleum into useful fractions. The diagram below shows the different fractions obtained from a fractionating column.

(i) Which of these fractions has the lowest boiling point?

.....

(ii) State **one** use for each of the following fractions.

paraffin

bitumen

(d) Petroleum is a mixture of organic compounds.

Which **one** of the following best describes the compounds found in petroleum? Put a ring around the correct answer.

acids alcohols carbohydrates hydrocarbons

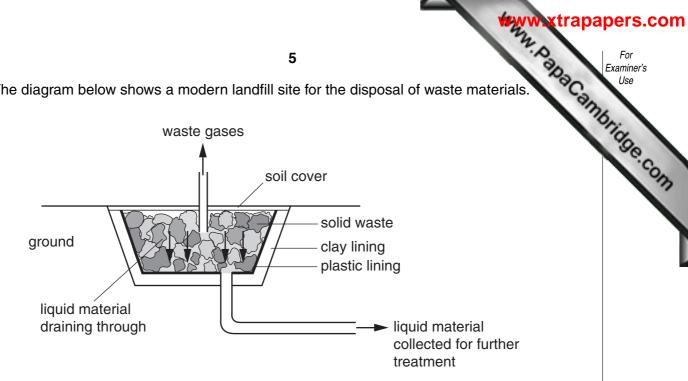
[1]

[3]

[2]

4

(e) Before petroleum is fractionated, it is often heated to remove dissolved natural g. Most of this natural gas is methane, CH₄.
Draw a diagram to show how the electrons are arranged in methane.


show hydrogen electrons as show carbon electrons as

(f) Methane, ethane and propane belong to a particular homologous series of compounds. State the name of the homologous series to which these three compounds belong.

[1]

[5]

The diagram below shows a modern landfill site for the disposal of waste materials. 2

The waste materials are broken down naturally in several stages.

(a)	mat Wha	he first stage, micro-organisms (mainly bacteria) break down some of the organic erial in the waste to carbon dioxide. at is the name given to the process by which organisms use food to produce carbon tide?
		[1]
(b)		ne second stage, the micro-organisms break down organic substances to produce monia, hydrogen and more carbon dioxide.
	(i)	Describe a test for hydrogen.
		test
		result
	(ii)	The large volumes of hydrogen produced may be hazardous. Explain why hydrogen may be hazardous when mixed with air.
	(iii)	Ammonia is a base. Describe a test for ammonia.
		test
		result

For Examiner's Use

(c) In the third stage, ethanoic acid is produced.

Draw the structure of ethanoic acid showing all atoms and bonds.

[1]

- (d) In the fourth stage, carbon dioxide reacts with hydrogen to form methane and oxygen.
 - (i) Complete the equation for this reaction.

$$CO_2 + \dots \rightarrow CH_4 + O_2$$

(ii) State one use of methane.

.....

(iii) Methane is a gas.

Which **two** of the following statements about gas molecules are true? Tick **two** boxes.

The molecules are far apart.

The molecules are not moving.

The molecules are randomly arranged.

The molecules are arranged in a regular manner.

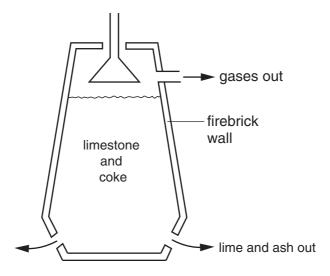
[4]

For Examiner's

(e) The list below shows some of the substances which are found in the liquid which through the waste.

aluminium
calcium carbonate
iron
lead
magnesium
nickel
sodium sulphate
zinc

From this list choose


(iv)

(i)	a metal used to galvanise iron.
(ii)	a transition metal.
(iii)	a metal which is in Group IV of the periodic table.

a substance which will release carbon dioxide when an acid is added.

a matal which is used to make aircraft hadies

One way of making lime from limestone (calcium carbonate) is shown in the diagram. 3

The limestone is mixed with coke and dropped into the limekiln. The coke is burnt and releases heat.

(a)	State one use of limestone, other than in making lime.
	[1]
(b)	Coke is mainly carbon. Write a symbol equation for the burning of carbon.
	[2]
(c)	State the name of the type of reaction which releases heat energy.
	[1]
(d)	The heat produced by the burning coke causes thermal decomposition of the limestone. Complete the word equation for the thermal decomposition of calcium carbonate.
	$ \text{calcium carbonate} \rightarrow $
	[2]

[3]

(e) (i) Complete the following equation for the reaction of calcium carbona hydrochloric acid.

$$\mathsf{CaCO}_3 + \dots \, \mathsf{HC}l \to \mathsf{CaC}l_2 + \mathsf{CO}_2 + \mathsf{H}_2\mathsf{O}$$

(ii)	Describe how you would test for the gas given off in this reaction.	
------	---	--

test

result

(f) Quicklime, CaO, is a product of the thermal decomposition of calcium carbonate.

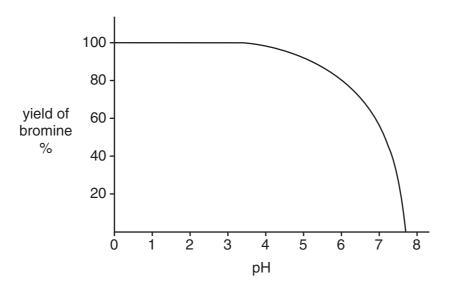
When quicklime is heated strongly with coke, calcium carbide is formed.

$$CaO + 3C \rightarrow CaC_2 + CO$$

(i) What type of reaction is the conversion of C to CO? Explain your answer.

.....

.....


(ii) When water is added to calcium carbide, CaC₂, acetylene is formed. State a use of acetylene.

[3]

Bromine is an element in Group VII of the Periodic Table.						
(a)	(a) State the name given to the Group VII elements.					[1] Use Conn
(b)			s two isotopes n (mass) numl	s. ber of bromine-79 is 7	79 and of bromine-81	is 81.
	(i)	What is	s the meaning	of the term isotopes	?	
	(ii)	•	of bromine-79	o show the numbers and bromine-81. A		· · · · · · · · · · · · · · · · · · ·
			number of	bromine-79	bromine-81	
			electrons			
			neutrons			
			protons			
						[5]
(c)	Whe		rine is bubbled	n seawater by treatme d through a solution		e, the solution turns
	(i)	What o	does this tell yo	ou about the reactivity	y of chlorine compare	ed with bromine?
	(ii)	Write a	a word equatio	n for this reaction.		
						[2]

(d) In order to get the maximum yield of bromine from seawater, acid is added due extraction procedure.

The graph shows how the yield of bromine changes with pH.

(i) What is the highest pH at which the yield of bromine is 100%?

.....

(ii) The pH scale is used to measure acidity. Some pH values are given below.

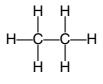
рН 3

pH 5

pH 7

pH 9

pH 11


From this list of pH values choose

the pH which is most acidic.

the pH of a neutral solution.

[3]

(e) Bromine water can be used to distinguish between ethane and ethene.

ethane

ethene

Describe what you would observe when bromine water is added to ethene.

[1]

5 When fuels are burnt, carbon dioxide and water are formed.

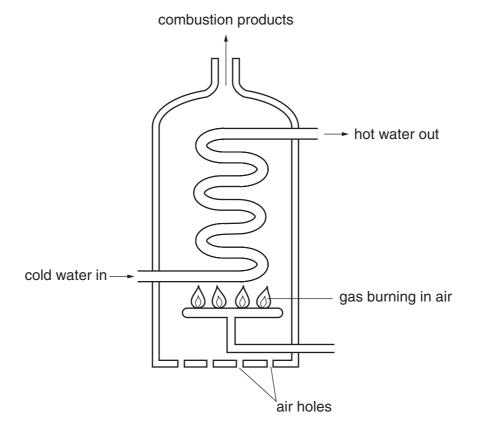
(a) Complete the equation for the burning of propane.

$$C_3H_8 + ... O_2 \rightarrow 3CO_2 + 4H_2O$$

(b)	Describe a	chemical	test for water.	
-----	------------	----------	-----------------	--

test	
result	
	[2]

(c) In which two of the following is carbon dioxide produced. Tick two boxes.


a car driven by a petrol engine	
magnesium carbonate reacting with an acid	

sodium reacting with water

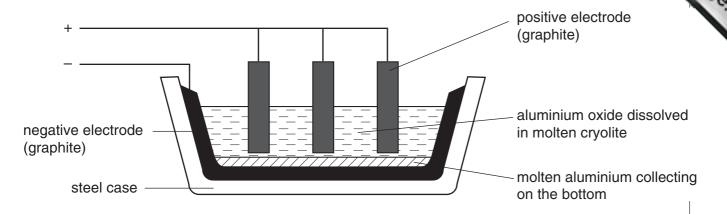
zinc reacting with hydrochloric acid [2]

For Examiner's Use

(d) The diagram shows a water heater.

If some of the air holes become blocked, a poisonous gas is produced.

(i)	State the name of this poisonous gas.	
(ii)	Explain how this poisonous gas has been formed.	
		[2]


For Examiner's Use

(e) The table below compares the amounts of carbon dioxide and sulphur dioxide when 1 kilogram of different fuels are burnt.

fuel	mass of carbon dioxide produced/g	mass of sulphur dioxide produced/g
oil	2900	5.0
gas	2500	0.1
coal	2500	11.0

(i)	Which fuel is least polluting?
(ii)	Which fuel when burnt, contributes most to the formation of acid rain?
(iii)	State two harmful effects of acid rain.
(iv)	When acid rain falls on the ground, it can react with insoluble aluminium compounds in the soil. A solution of aluminium ions is formed.
	Describe what you would observe when aqueous sodium hydroxide is added to a solution containing aluminium ions.
	[6]

6 Aluminium is extracted from its ore, bauxite. The bauxite is purified to give aluminium oxide. Electrolysis is then used to extract the aluminium from aluminium oxide dissolved in cryolin

The melting point of pure aluminium oxide is 2070 °C. The melting point of the mixture of aluminium oxide and cryolite is about 1000 °C.

(a)	Suggest why electrolysis is used to extract aluminium from aluminium oxide rather than reduction using carbon.
	[1]
(b)	How is the electrolyte of aluminium oxide and cryolite kept molten?
	[1]
(c)	What property of graphite makes it suitable for use as electrodes?
	[1]
(d)	State the name given to the negative electrode.
	[1]
(e)	The melting point of steel is about 1500 °C. Suggest two reasons why molten aluminium oxide is not used by itself in this electrolysis.
	[2]
(f)	During the electrolysis, hot oxygen is formed at the positive electrodes. Suggest why the positive electrodes have to be replaced frequently.
	[2]

(g) Aluminium is formed at the negative electrode. Complete the following equation for the reaction at the negative electrode.

$$Al^{3+} + \dots \rightarrow Al$$

(h) Why do aluminium ions move towards the negative electrode?

.....[1]

(i) A sample of bauxite ore had the following composition:

aluminium oxide 120g 30g iron(III) oxide silica 40g titanium(IV) oxide 10g

Calculate the percentage of aluminium oxide in this sample of bauxite.

[1]

Aluminium is a metal in Group III of the Periodic Table. State three physical properties which are typical of most metals.

1

2

3

[3]

BLANK PAGE

BLANK PAGE

BLANK PAGE

_	DATA SHEET	The Periodic Table of the Elements
---	------------	------------------------------------

11 17 17 16 17 18 18 18 18 19 19 19 19		0	4 H elium	20 X N 00 10 10 10 10 10 10 10 10 10 10 10 10	40 Ar Argon	84 Krypton 36	131 X xenon 554	Rn Badon 86			173 175 1 Yb Lu 170 Yterbium Lutefium 170
1 1 1 1 1 1 1 1 1 1				16 Oxygen	32 S Sulphur 17	79 Se elenium 35	128 Te silurium 53	Po			169 173 Yb Thulium Ytterbium 69
1 1 1 1 1 1 1 1 1 1				14 Nitrogen 7	31 P Phosphorus 16	75 As Arsenic 34	122 Sb Antimony 52	209 Bismuth 83			167 Er Erbium 69
1				11 B Boron 6	AL Aluminium 14	70 Gallium 3	115 In hodium 50	204 T1 Thatlium 82			162 165 Dy Ho Dysprosium Holmium 66 67
1						64 Copper 30	34	80		167	
1	hroup					59 Nickel 29	106 Pd Palladium 46	195 Pt		152	Europium 6
## 51 52 55 55			T Hydrogen			56 Fe Iron 27	Ru Ru Ithenium	190 Os Smium			Pm Smarium Promethium 61 62
Titanium Vanadium (Nobium 40 178 181 Ta 140 S						Mn Manganese	Tc Technetium 43	186 Re Rhenium 75			Neodymium 60
4 8 Titanium 40 Tit8 Tit8 Tit8 Tit8 Tit8 Tit8 Tit8 Tit8						51 V anadium 2.	93 Niobium	181 Ta antalum 72			Cerium Praseodymium 58 59
Be Beyllium 4 4 24 24 40 Ca a sum 20 21						48 T Titanium	91 Zronium 40	178 Hf Hafnium * 72		ries 88	
		=		4	-	40 Ca Calcium 2	88 Strontium 39	137 Ba Barium 5	226 Radi um 89	3-71 Lanthanoid serie 3-103 Actinoid series	