Centre Number

Candidate Number

Name

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CHEMISTRY

0620/02

Paper 2 (Core)

May/June 2005

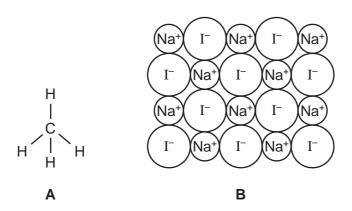
1 hour 15 minutes

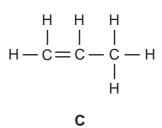
Candidates answer on the Question Paper. No Additional Materials required.

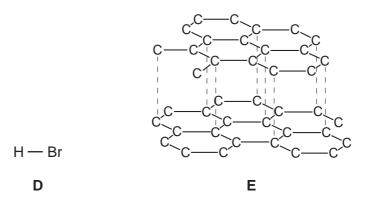
READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.


The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page 16.


If you have been given a label, look at the details. If any details are incorrect or missing, please fill in your correct details in the space given at the top of this page.


Stick your personal label here, if provided.

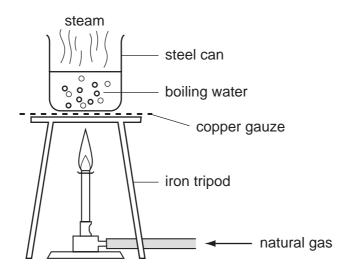
For Examiner's Use	
1	
2	
3	
4	
5	
6	
Total	

1 The structures of some substances are shown below.

(a) Answer these questions using the letters A, B, C, D or E.

(1)	vvnich structure is methane?	[1]
(ii)	Which two structures are giant structures? and	[1]
(iii)	Which two structures are hydrocarbons? and	[1]
(iv)	Which structure contains ions?	[1]
(v)	Which two structures have very high melting points?	
	and	[1]

					WEWW.	xtrapapers
				3	W.X	Fo
(b)	Str	ucture E is a form o	f carbon.			TO CALL US
	(i)	What is the name Put a ring around				Examily (1)
		carbide	graphite	lead	poly(hexene)	[1]
	(ii)	Name another form	m of carbon.			
						[1]
(c)	Wri	te the simplest form	nula for substan	ce B .		
						[1]
(d)		ubstance D an eler blain your answer.	ment or a comp	ound?		
						[1]


2 A student collected some water from a polluted river. The water contained soluble solids and insoluble clay and had a pH of 5.

	www.xt	rapapers.com
	4	For Examiner's
	student collected some water from a polluted river. e water contained soluble solids and insoluble clay and had a pH of 5.	SC SIMBLE
(a)	How can the student separate the clay from the rest of the river water?	Tale
		[1] COM

(b) The student uses litmus paper to show that the river water is acidic. What will be the result of this test?

[1]

(c) The student then boiled the river water to obtain the soluble solids. The diagram shows how she heated the water.

Which of the substances named in the diagram is

	(i)	an alloy,	[1]
	(ii)	a compound which is liquid at room temperature,	[1]
	(iii)	an element,	[1]
	(iv)	a fuel?	[1]
(d)	Nar	ne the main substance in natural gas.	[1]
(e)	Wh	at is the normal temperature of boiling water?	
			[1]

www.xtrapapers.com
For Examiner's Use

(f) After the student boiled off the water, she analysed the white powder on the in the steel can.

The table shows her results.

name of ion	formula of ion	mass of ion present /milligrams
calcium	Ca ²⁺	16
carbonate	CO ₃ ²⁻	35
chloride	C <i>l</i> −	8
nitrate	NO ₃ ⁻	4
sodium	Na⁺	8
sulphate	SO ₄ ²⁻	6

	(i)	Which positive ion had the greatest concentration in the sample of river water?	
			[1]
	(ii)	Complete the following equation to show how a sodium ion is formed from sodium atom.	n a
		Na → Na ⁺ +	[1]
(g)		tead of using natural gas, the student could have used butane to heat the water. e formula of butane is C_4H_{10} .	
	(i)	What products are formed when butane burns in excess air?	
			[1]
	(ii)	Name the poisonous gas formed when butane undergoes incomplete combustio	n.
			[1]

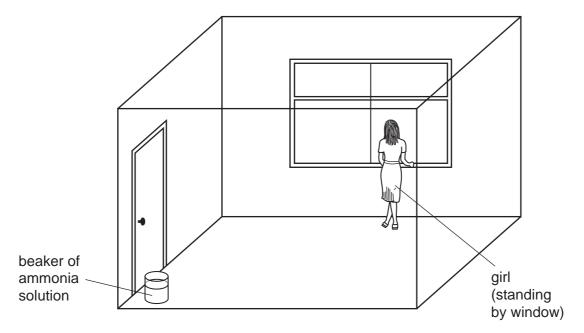
Use

Am	Ammonia is a gas which forms an alkaline solution when dissolved in water.					
(a)	Con gas		pelow to show	the arrangement of	the molecules in ammo	
	0	represents a single	molecule of am	monia.		
				0		
						[2]
(b)	of a	ch one of the following mmonia? a ring around the cor		ost likely to represer	nt the pH of a dilute solut	ion
		pH2	pH6	pH7	рН9	[1]
(c)	The	structure of the amn	nonia molecule	is shown below.		
			Η´	N H H		
	(i)	Write the simplest fo	ormula for amm	onia.		
						[1]
	(ii)	Describe the type of	bonding in a m	olecule of ammonia		
						[1]

(iii) Ammonia is a gas at room temperature. Suggest why ammonia has a low boiling point.

[1]

- (d) Many fertilisers contain ammonium sulphate.
 - (i) Which acid must be added to ammonia solution to make ammonium sulphate? Put a ring around the correct answer.

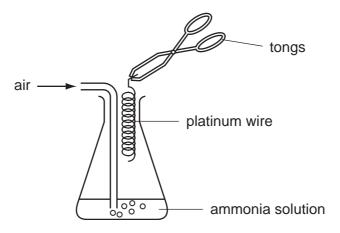

HC1 HNO_3 H₃PO₄ H₂SO₄

(ii) Fill in the missing words in the following sentence using two of the words from the

air hydrogen nitrogen soil sodium water

Fertilisers are needed in agriculture to replace the _____, phosphorus and other elements which are removed from the when crops are grown. [2]

(e) A solution of ammonia has a strong smell. A beaker of ammonia solution is put in the corner of a room which is free of draughts.



At first, the girl by the closed window cannot smell the ammonia. After 30 seconds she smells the ammonia.

Use the kinetic particle theory to explain these facts.

[3]
 , [J

(f) The diagram shows the apparatus used for oxidising ammonia in the laboratory.

First, nitrogen(II) oxide, NO, is produced. This then reacts with oxygen to form nitrogen(IV) oxide, NO_2 .

(i) Where does the oxygen come from in this reaction?

[1]

(ii) Balance the equation for the reaction of nitrogen(II) oxide with oxygen.

$$2NO + O_2 \rightleftharpoonsNO_2$$

[1]

(iii) What is the meaning of the symbol \rightleftharpoons ?

[1]

(iv) The platinum wire acts as a catalyst in the reaction. As the reaction takes place, the wire begins to glow red hot.

What does this show about the reaction?

[1]

[1]

4 Poly(ethene) is a plastic which is made by polymerizing ethene, C₂H₄.

(a) Which one of the following best describes the ethene molecules in this reaction? Put a ring around the correct answer.

alcohols	alkanaa	monomore	nolymore	producto	[4]
aiconois	alkanes	monomers	polymers	products	ָין.

(b) The structure of ethane is shown below.

Explain, by referring to its bonding, why ethane cannot be polymerized.

(c) Draw the structure of ethene, showing all atoms and bonds.

(d) Ethene is obtained by cracking alkanes.

(i) Explain the meaning of the term *cracking*.

....

[1]

(ii) What condition is needed to crack alkanes?

[1]

(iii) Complete the equation for cracking decane, $C_{10}H_{22}$.

$$C_{10}H_{22} \longrightarrow C_2H_4 + \dots$$
 [1]

(e) Some oil companies 'crack' the ethane produced when petroleum is distilled.

(i) Complete the equation for this reaction.

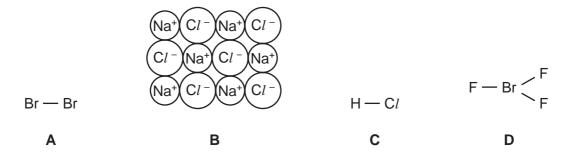
$$C_2H_6 \longrightarrow C_2H_4 + \dots$$

(ii)	Describe the process of fractional distillation which is used to separate the different fractions in petroleum.	ent
		,
		[2]
(iii)	State a use for the following petroleum fractions.	
	petrol fraction	
	Lubricating fraction	[0]

[2]

Www. PapaCambridge.com 11 5 The halogens are a group of diatomic non-metals showing a trend in colour, sta reactivity. (a) In this description, what is the meaning of diatomic, (ii) state? [1] **(b)** The table gives some information about some of the halogens. melting point boiling point state at room element colour /°C /°C temperature -101 -35 chlorine green bromine -7 +59 iodine +114 grey-black Complete the last column in the table to show the state of each of the halogens at room temperature. [2] (ii) State the colour of bromine. [1] (iii) Suggest a value for the boiling point of iodine. [1] (c) Complete the word equation for the reaction of chlorine with potassium iodide.

chlorine


potassium iodide

[2]

(d) (i) Draw a diagram to show the electronic structure of a chlorine molecule. Show only the outer electrons.

(ii) State a use of chlorine. [1]

(e) The structures of some substances containing halogens are shown below.

(i) Which one of these structures, A, B, C or D, shows an element? [1]

(ii) Which one of these structures forms hydrochloric acid when dissolved in water?

(iii) Complete the following sentence.

Structure **B** conducts electricity when it is molten because

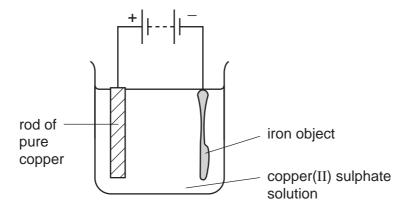
13

[1]

For Examiner's Use (f) Astatine, At, is below iodine in Group VII of the Periodic Table. (i) In which Period of the Periodic Table is astatine? (ii) How many protons does a tatine have in its nucleus? [1] (iii) Astatine has many isotopes. What do you understand by the term isotopes? (iv) The most common isotope of astatine has a nucleon number (mass number) of 210. Calculate the number of neutrons in this isotope of astatine.

- 6 The electroplating of iron with chromium involves four stages.
 - The iron object is cleaned with sulphuric acid, then washed with water.
 - The iron is plated with copper.
 - 3. It is then plated with nickel to prevent corrosion.
 - 4. It is then plated with chromium.
 - (a) The equation for stage 1 is

Fe +
$$H_2SO_4$$
 \longrightarrow FeSO₄ + H_2


(i) Write a word equation for this reaction.

[2]

(ii) Describe a test for the gas given off in this reaction.

test	 ••••
result	[2]

(b) The diagram shows how iron is electroplated with copper.

(i) Choose a word from the list below which describes the iron object. Put a ring around the correct answer.

anion anode cathode cation [1]

(ii) What is the purpose of the copper(II) sulphate solution?

111
 r . 1

www.xtrapa	pers.com
Tabac	For Examiner's Use

	(iii)	Describe what happens during the electroplating to	3
		the iron object,	3
		the rod of pure copper. [2]	
	(iv)	Describe a test for copper(II) ions.	
		test	
		result	
		[3]
(c)	Sug	gest why chromium is used to electroplate articles.	
		[1]]
(d)		information below shows the reactivity of chromium, copper and iron with warm ochloric acid.	า
	chr	mium – few bubbles of gas produced every second	
	сор	er – no bubbles of gas produced	
	iron	 many bubbles of gas produced every second 	
	Put	hese three metals in order of their reactivity with hydrochloric acid.	
		Most reactive →	
		Least reactive →	1
		[1]]

16

DATA SHEET
The Periodic Table of the Elements

				I		16		1	
	0	4 He Helium	20 Ne Neon	40 Ar Argon	84 Kr Krypton 36	131 Xe Xenon 54	Rn Radon 86		175 Lu Lutetium
	II/		19 Fluorine	35.5 C1 Chlorine	80 Br Bromine	127 I lodine	At Astatine 85		173 Yb Ytterbium
	>		16 Oxygen	32 S Sulphur 16	79 Se Selenium 34	128 Te Tellurium 52	Po Polonium 84		169 Tm Thulium
	>		14 N Nitrogen 7	31 Phosphorus	75 AS Arsenic 33	Sb Antimony 51	209 Bi Bismuth		167 Er Erbium
	2		12 C Carbon 6	28 Si Silicon	73 Ge Germanium	119 Sn Tin	207 Pb Lead 82		165 Ho
	=		11 Boron 5	27 A1 Aluminium	70 Ga Gallium 31	115 In Indium 49	204 T 1 Thallium		162 Dy Dysprosium
					65 Zn Zinc 30	Cadmium 48	201 Hg Mercury 80		159 Tb Terbium
					64 Cu Copper 29	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium
Group					59 X Nickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium
Gre					59 Co Cobalt	103 Rh Rhodium 45	192 Ir Irdium		150 Sm Samarium
		Hydrogen			56 Fe Iron	101 Ru Ruthenium 44	190 Os Osmium 76		Pm Promethium
					55 Mn Manganese 25	Tc Technetium 43	186 Re Rhenium 75		144 Na Neodymium
					Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		141 Pr Praseodymium
					51 V Vanadium 23	93 Nb Niobium	181 Ta Tantalum		140 Ce Cerium
					48 T Trtanium	91 Zr Zirconium 40	178 Hf Hafnium 72		
					Scandium	89 ×	139 La Lanthanum *	Actinium 89	Series
	=		9 Be	24 Mg Magnesium 12	40 Ca Calcium	Strontium	137 Ba Barium 56	226 Ra Radium	*58-71 Lanthanoid series 90-103 Actinoid series
	_		7 Li thium	23 Na Sodium	39 K Potassium	85 Rb Rubidium 37	133 CS Caesium 55	Fr Francium 87	*58-71 L _ℓ

1	₩ ₩W	xtrapapers.com
		a la
175 Lu Lutetium 71	Lr Lawrenciur 103	TO COLD
173 Yb Ytterbium 70	Nobelium 102	A REPORT OF THE PROPERTY OF TH
169 Tm Thulium 69	Md Mendelevium 101	an
167 Er Erbium 68	Fm Fermium 100	1
165 Ho Holmium 67	Es Einsteinium 99	(r.t.p.).
162 Dy Dysprosium 66	Cf Californium 98	pressure
159 Tb Terbium 65	BK Berkelium 97	tture and
157 Gd Gadolinium 64	Cm Curium 96	r tempera
152 Eu Europium 63	Am Americium 95	יז at room
Sm Samarium 62	Pu Plutonium 94	s is 24 dn
Pm Promethium 61	Neptunium 93	of any ga:
144 Nd Neodymium 60	238 U Uranium 92	ane mole
141 Pr Praseodymium 59	Pa Protactinium 91	The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).
140 Ce Cerium 58	232 Th Thorium 90	The vc

b = proton (atomic) number

a = relative atomic mass X = atomic symbol

ω ×

Key