UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

0620 CHEMISTRY

0620/32

Paper 3 (Extended Theory), maximum raw mark 80

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2		2			Paper
			IGCSE – May/June 2011	0620	32
	(i) Rb	/ Sr		[1]
	(ii) I			[1]
	(iii) Fe			[1]
	(iv) P			[1]
	(v) Si			[1]
((a) (i) no	reaction		[1]
		for	+ $Sn^{2+} \rightarrow Fe^{2+}$ + $Sn / 2Fe$ + $3Sn^{2+} \rightarrow 2Fe^{3+}$ + $3Sn$ realising that there would be a reaction shown by an attemptation e.g. writing Fe ₂ Sn etc. allow [1]	ot to write an	[2]
		no	reaction		[1]
	(ii	All	oxide, nitrogen dioxide (accept nitogen(IV) oxide/dinitrogen three for two cept correct formulae	tetroxide), oxygei	ר [2]
		any	/ two correct products		[1]
((b) (i) tin			[1]
	(ii		$H^- \rightarrow O_2 + 2H_2O + 4e^-$ balanced allow [1]		[2]
	(iii) sul	furic acid		[1]
	• •		more reactive than iron/steel ss reactive than iron/steel		[1] [1]
	fc	orms p	prrodes/reacts/loses electrons/is oxidised/is anodic/provie ositive ions (in preference to iron or steel) ORA on is cathodic for this mark.	des sacrificial pi	rotection/ [1]
	рі	refere	el corrodes/reacts/rusts/loses electrons/is oxidised/is ano nce to tin). ORA n is cathodic for this mark	dic/forms positive	ions (in [1]

			Made Oale - The State			
	Page 3		Mark Scheme: Teachers' version	Syllabus	Paper	
			IGCSE – May/June 2011	0620	32	
3	(a) (i) <u>concentration</u> of thiosulfate is proportional to volume of thiosulfate solution addec total volume is same in all experiments) / <u>concentration</u> of acid always the same					
		mparable allow	[1]			
	(ii)	240	s		[1]	
	(iii)	beca	reases/reaction slower ause concentration of thiosulfate decreases uency/chances/rate of collisions decreases		[1] [1] [1]	
		olume of thiosulf	ate / less			
	(b) rate	e incre	eases with temperature (or at 42 °C) ORA		[1]	
	par (do		[1]			
	mo	more collisions / ORA (last mark is for qualification of the collisions) i.e. greater frequency / more per unit time/more often /greater chance/more likely rate/more effective/more successful/more with activation energy / ORA				
	gre					
4	accept $2Fe_2O_3$ $Fe_2O_3 - C$ $C + O_2$	One redox equation accept $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$ $2Fe_2O_3 + 3C \rightarrow 4Fe + 3CO_2$ $Fe_2O_3 + 3C \rightarrow 2Fe + 3CO$ $C + O_2 \rightarrow CO_2$ $CO_2 + C \rightarrow 2CO$			[1]	
	one acid/base equation $CaO + SiO_2 \rightarrow CaSiO_3$ or $CaCO_3 + SiO_2 \rightarrow CaSiO_3 + CO_2$ three more equations or comments carbon <u>burns</u> to form carbon dioxide this reaction is <u>exothermic</u> or <u>produces heat</u> carbon dioxide is <u>reduced</u> to carbon monoxide carbon monoxide <u>reduces</u> hematite to iron carbon <u>reduces</u> hematite to iron limestone removes silica <u>which is an impurity</u> to form slag <u>which is a waste product</u> limestone <u>decomposes or</u> symbol/word equation				[1]	
					[3]	

Pa	ge 4	Mark Scheme: Teachers' version	Syllabus	Paper
		IGCSE – May/June 2011	0620	32
i (a)	Zn + H ₂	$SO_4 \rightarrow ZnSO_4 + H_2 / Zn + 2H^+ \rightarrow Zn^{2+} + H_2$		[2]
		e for correct reactants [1] correct products [1] quation is given don't penalise SO ₄ ^{2–} spectator ions on botl	n sides	
(b)	(exotherr	nic because) a cell produces (electrical) energy/electricity		[1]
	the next	two marks score for		
		are lost AND gained / oxidation no. or state/valency both rect half equations i.e. $Zn \rightarrow Zn^{2+} + 2e^{-}$ and $2H^{+} + 2e^{-}$		lecreases [2]
(c)	zinc cond it is	s the more reactive metal / it supplies electrons / it forms io	ns more readily t	[1] han iron [1]
(d)	replace in use (mor	tinc with magnesium ron with copper e) concentrated <u>sulfuric</u> acid se a <u>more</u> concentrated acid / a <u>more</u> concentrated solutio	n	
	any two			[2]

	Page 5		Mark Scheme: Teachers' version	Syllabus	Paper
			IGCSE – May/June 2011	0620	32
6	(a) (i)	equa	at which methanol formed by forward reaction als rate it is reacting in back reaction of forward reaction equals rate of back reaction allow [1]		[1] [1]
	(ii)	high Expl	lower/decreased temperature /higher/increased pressure lanations not needed but if they are given they must be cor ORE values of temperature and pressure	rect	[1] [1]
	(iii)	-	pressure can be used / lower pressure due to expense or not use a low temperature as rate would be too slow the ra	•	[1] economic [1]
	(b) (i)	este	r		[1]
	(ii)	soap	o/sodium stearate or any acceptable salt/glycerol		[1]
	(iii)	burn	ning both fuels forms carbon		[1]
			ving plants to make biodiesel removes carbon dioxide a atmosphere		[1]
	(c) (i)	corre	ect SF of an octane		[1]
	(ii)	resu resu not colo	bromine (water)/bromine in an organic solvent ilt octane remains brown/orange/yellow/red ilt octane goes colourless/decolourises clear/discolours ur of reagent must be shown somewhere for [3] otherwise ept equivalent test using KMnO ₄ in acid or alkali	max [2]	[1] [1] [1]

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2011	0620	32
	and 1nbp around phosphorus and 3nbp around each chlorine		[1] [1]
(b) (i)	PCl_3 + $3H_2O \rightarrow 3HCl$ + H_3PO_3		[1]
	acid solutions same concentration measure pH/pH paper/Universal indicator hydrochloric acid lower pH		[1] [1] [1]
	colours of Universal indicator can be given as red <orange<yellow <math="" as="" hcl="" ignore="" is="" long="" lower="" ph="" precise="" than="" values="">H_3PO_3</orange<yellow>		
;	OR Acid solutions same concentration add magnesium or any named metal above Hydrogen in rea magnesium	activity series but	[1] not above
	calcium carbonate or any insoluble carbonate hydrochloric acid react faster/shorter time		[1] [1]
I	OR acid solutions same concentration measure electrical conductivity hydrochloric acid better conductor/bulb brighter		[1] [1] [1]
;	OR acid solutions same concentration add sodium thiosulphate hydrochloric acid forms precipitate faster/less time		[1] [1] [1]
1	sodium hydroxide/sodium carbonate titration cond on correct reagent second mark scores for mention of titration /burette/pipette/in experimental detail not required	dicator.	[1] [1]
;	any named soluble calcium salt e.g. calcium chloride/nitrate/h	nydroxide	[1]
I	precipitation/filter/decant/centrifuge		[1]

Page 7		7	Mark Scheme: Teachers' version	Syllabus	Paper
			IGCSE – May/June 2011	0620	32
8	(a) (i)	(to avoid) carbon monoxide formation/so complete combustion occurs/avoid combustion So that $\rm CO_2$ is produced			omplete [1]
		CO	does not dissolve/react with alkali		[1]
	(ii)	CO ₂	is acidic		[1]
	(iii)	volume of gaseous hydrocarbon 20 cm ³ volume of oxygen used = 90 cm ³ volume of carbon dioxide formed = 60 cm ³			[1] [1]
		no n			
	(iv)	$2C_3H_6(g)/2CxHy(g) + 9O_2(g) \rightarrow 6CO_2(g) + 6H_2O(I)$			[1]
		$OR \ \ C_3H_6(g) \ + \ 9/2O_2(g) \ \rightarrow \ 3CO_2(g) \ + \ 3H_2O(I)$			
		C₃H	6		[1]
		C₃H	$_{\rm 6}$ can be given in the equation for the second mark		
	(b) (i)	correct structural or displayed formula of another chlorobutane / dichl polychlorobutane		utane / dichlorob	utane / [1]
	(ii)	light	/ 200 °C / lead tetraethyl		[1]
	(iii) cracking is the decomposition/breaking down of an alkane/hydrocarbon/p heat/high temperature / Temperature between 450 °C to 800 °C			า [1]	
		OR	catalyst / named catalyst ve a simpler alkane and alkene	, ,	[1] [1]
		word	d equation or equation as example		[1]
		to make polymers / to increase petrol fraction / organic chemicals/petrochemica hydrogen any four			nicals / [1]